com.google.common.collect.Tables Maven / Gradle / Ivy
Show all versions of guava Show documentation
/*
* Copyright (C) 2008 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.base.Supplier;
import com.google.common.collect.Table.Cell;
import java.io.Serializable;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.Spliterator;
import java.util.function.BinaryOperator;
import java.util.stream.Collector;
import org.checkerframework.checker.nullness.qual.Nullable;
/**
* Provides static methods that involve a {@code Table}.
*
* See the Guava User Guide article on {@code Tables}.
*
* @author Jared Levy
* @author Louis Wasserman
* @since 7.0
*/
@GwtCompatible
public final class Tables {
private Tables() {}
/**
* Returns a {@link Collector} that accumulates elements into a {@code Table} created using the
* specified supplier, whose cells are generated by applying the provided mapping functions to the
* input elements. Cells are inserted into the generated {@code Table} in encounter order.
*
*
If multiple input elements map to the same row and column, an {@code IllegalStateException}
* is thrown when the collection operation is performed.
*
* @since 21.0
*/
@Beta
public static > Collector toTable(
java.util.function.Function super T, ? extends R> rowFunction,
java.util.function.Function super T, ? extends C> columnFunction,
java.util.function.Function super T, ? extends V> valueFunction,
java.util.function.Supplier tableSupplier) {
return TableCollectors.toTable(rowFunction, columnFunction, valueFunction, tableSupplier);
}
/**
* Returns a {@link Collector} that accumulates elements into a {@code Table} created using the
* specified supplier, whose cells are generated by applying the provided mapping functions to the
* input elements. Cells are inserted into the generated {@code Table} in encounter order.
*
* If multiple input elements map to the same row and column, the specified merging function is
* used to combine the values. Like {@link
* java.util.stream.Collectors#toMap(java.util.function.Function, java.util.function.Function,
* BinaryOperator, java.util.function.Supplier)}, this Collector throws a {@code
* NullPointerException} on null values returned from {@code valueFunction}, and treats nulls
* returned from {@code mergeFunction} as removals of that row/column pair.
*
* @since 21.0
*/
public static > Collector toTable(
java.util.function.Function super T, ? extends R> rowFunction,
java.util.function.Function super T, ? extends C> columnFunction,
java.util.function.Function super T, ? extends V> valueFunction,
BinaryOperator mergeFunction,
java.util.function.Supplier tableSupplier) {
return TableCollectors.toTable(
rowFunction, columnFunction, valueFunction, mergeFunction, tableSupplier);
}
/**
* Returns an immutable cell with the specified row key, column key, and value.
*
* The returned cell is serializable.
*
* @param rowKey the row key to be associated with the returned cell
* @param columnKey the column key to be associated with the returned cell
* @param value the value to be associated with the returned cell
*/
public static Cell immutableCell(
@Nullable R rowKey, @Nullable C columnKey, @Nullable V value) {
return new ImmutableCell<>(rowKey, columnKey, value);
}
static final class ImmutableCell extends AbstractCell implements Serializable {
private final @Nullable R rowKey;
private final @Nullable C columnKey;
private final @Nullable V value;
ImmutableCell(@Nullable R rowKey, @Nullable C columnKey, @Nullable V value) {
this.rowKey = rowKey;
this.columnKey = columnKey;
this.value = value;
}
@Override
public R getRowKey() {
return rowKey;
}
@Override
public C getColumnKey() {
return columnKey;
}
@Override
public V getValue() {
return value;
}
private static final long serialVersionUID = 0;
}
abstract static class AbstractCell implements Cell {
// needed for serialization
AbstractCell() {}
@Override
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (obj instanceof Cell) {
Cell, ?, ?> other = (Cell, ?, ?>) obj;
return Objects.equal(getRowKey(), other.getRowKey())
&& Objects.equal(getColumnKey(), other.getColumnKey())
&& Objects.equal(getValue(), other.getValue());
}
return false;
}
@Override
public int hashCode() {
return Objects.hashCode(getRowKey(), getColumnKey(), getValue());
}
@Override
public String toString() {
return "(" + getRowKey() + "," + getColumnKey() + ")=" + getValue();
}
}
/**
* Creates a transposed view of a given table that flips its row and column keys. In other words,
* calling {@code get(columnKey, rowKey)} on the generated table always returns the same value as
* calling {@code get(rowKey, columnKey)} on the original table. Updating the original table
* changes the contents of the transposed table and vice versa.
*
* The returned table supports update operations as long as the input table supports the
* analogous operation with swapped rows and columns. For example, in a {@link HashBasedTable}
* instance, {@code rowKeySet().iterator()} supports {@code remove()} but {@code
* columnKeySet().iterator()} doesn't. With a transposed {@link HashBasedTable}, it's the other
* way around.
*/
public static Table transpose(Table table) {
return (table instanceof TransposeTable)
? ((TransposeTable) table).original
: new TransposeTable(table);
}
private static class TransposeTable extends AbstractTable {
final Table original;
TransposeTable(Table original) {
this.original = checkNotNull(original);
}
@Override
public void clear() {
original.clear();
}
@Override
public Map column(R columnKey) {
return original.row(columnKey);
}
@Override
public Set columnKeySet() {
return original.rowKeySet();
}
@Override
public Map> columnMap() {
return original.rowMap();
}
@Override
public boolean contains(@Nullable Object rowKey, @Nullable Object columnKey) {
return original.contains(columnKey, rowKey);
}
@Override
public boolean containsColumn(@Nullable Object columnKey) {
return original.containsRow(columnKey);
}
@Override
public boolean containsRow(@Nullable Object rowKey) {
return original.containsColumn(rowKey);
}
@Override
public boolean containsValue(@Nullable Object value) {
return original.containsValue(value);
}
@Override
public V get(@Nullable Object rowKey, @Nullable Object columnKey) {
return original.get(columnKey, rowKey);
}
@Override
public V put(C rowKey, R columnKey, V value) {
return original.put(columnKey, rowKey, value);
}
@Override
public void putAll(Table extends C, ? extends R, ? extends V> table) {
original.putAll(transpose(table));
}
@Override
public V remove(@Nullable Object rowKey, @Nullable Object columnKey) {
return original.remove(columnKey, rowKey);
}
@Override
public Map row(C rowKey) {
return original.column(rowKey);
}
@Override
public Set rowKeySet() {
return original.columnKeySet();
}
@Override
public Map> rowMap() {
return original.columnMap();
}
@Override
public int size() {
return original.size();
}
@Override
public Collection values() {
return original.values();
}
// Will cast TRANSPOSE_CELL to a type that always succeeds
private static final Function, Cell, ?, ?>> TRANSPOSE_CELL =
new Function, Cell, ?, ?>>() {
@Override
public Cell, ?, ?> apply(Cell, ?, ?> cell) {
return immutableCell(cell.getColumnKey(), cell.getRowKey(), cell.getValue());
}
};
@SuppressWarnings("unchecked")
@Override
Iterator> cellIterator() {
return Iterators.transform(original.cellSet().iterator(), (Function) TRANSPOSE_CELL);
}
@SuppressWarnings("unchecked")
@Override
Spliterator> cellSpliterator() {
return CollectSpliterators.map(original.cellSet().spliterator(), (Function) TRANSPOSE_CELL);
}
}
/**
* Creates a table that uses the specified backing map and factory. It can generate a table based
* on arbitrary {@link Map} classes.
*
* The {@code factory}-generated and {@code backingMap} classes determine the table iteration
* order. However, the table's {@code row()} method returns instances of a different class than
* {@code factory.get()} does.
*
* Call this method only when the simpler factory methods in classes like {@link
* HashBasedTable} and {@link TreeBasedTable} won't suffice.
*
* The views returned by the {@code Table} methods {@link Table#column}, {@link
* Table#columnKeySet}, and {@link Table#columnMap} have iterators that don't support {@code
* remove()}. Otherwise, all optional operations are supported. Null row keys, columns keys, and
* values are not supported.
*
* Lookups by row key are often faster than lookups by column key, because the data is stored
* in a {@code Map>}. A method call like {@code column(columnKey).get(rowKey)} still
* runs quickly, since the row key is provided. However, {@code column(columnKey).size()} takes
* longer, since an iteration across all row keys occurs.
*
* Note that this implementation is not synchronized. If multiple threads access this table
* concurrently and one of the threads modifies the table, it must be synchronized externally.
*
* The table is serializable if {@code backingMap}, {@code factory}, the maps generated by
* {@code factory}, and the table contents are all serializable.
*
* Note: the table assumes complete ownership over of {@code backingMap} and the maps returned
* by {@code factory}. Those objects should not be manually updated and they should not use soft,
* weak, or phantom references.
*
* @param backingMap place to store the mapping from each row key to its corresponding column key
* / value map
* @param factory supplier of new, empty maps that will each hold all column key / value mappings
* for a given row key
* @throws IllegalArgumentException if {@code backingMap} is not empty
* @since 10.0
*/
@Beta
public static Table newCustomTable(
Map> backingMap, Supplier extends Map> factory) {
checkArgument(backingMap.isEmpty());
checkNotNull(factory);
// TODO(jlevy): Wrap factory to validate that the supplied maps are empty?
return new StandardTable<>(backingMap, factory);
}
/**
* Returns a view of a table where each value is transformed by a function. All other properties
* of the table, such as iteration order, are left intact.
*
* Changes in the underlying table are reflected in this view. Conversely, this view supports
* removal operations, and these are reflected in the underlying table.
*
* It's acceptable for the underlying table to contain null keys, and even null values provided
* that the function is capable of accepting null input. The transformed table might contain null
* values, if the function sometimes gives a null result.
*
* The returned table is not thread-safe or serializable, even if the underlying table is.
*
* The function is applied lazily, invoked when needed. This is necessary for the returned
* table to be a view, but it means that the function will be applied many times for bulk
* operations like {@link Table#containsValue} and {@code Table.toString()}. For this to perform
* well, {@code function} should be fast. To avoid lazy evaluation when the returned table doesn't
* need to be a view, copy the returned table into a new table of your choosing.
*
* @since 10.0
*/
@Beta
public static Table transformValues(
Table fromTable, Function super V1, V2> function) {
return new TransformedTable<>(fromTable, function);
}
private static class TransformedTable extends AbstractTable {
final Table fromTable;
final Function super V1, V2> function;
TransformedTable(Table fromTable, Function super V1, V2> function) {
this.fromTable = checkNotNull(fromTable);
this.function = checkNotNull(function);
}
@Override
public boolean contains(Object rowKey, Object columnKey) {
return fromTable.contains(rowKey, columnKey);
}
@Override
public V2 get(Object rowKey, Object columnKey) {
// The function is passed a null input only when the table contains a null
// value.
return contains(rowKey, columnKey) ? function.apply(fromTable.get(rowKey, columnKey)) : null;
}
@Override
public int size() {
return fromTable.size();
}
@Override
public void clear() {
fromTable.clear();
}
@Override
public V2 put(R rowKey, C columnKey, V2 value) {
throw new UnsupportedOperationException();
}
@Override
public void putAll(Table extends R, ? extends C, ? extends V2> table) {
throw new UnsupportedOperationException();
}
@Override
public V2 remove(Object rowKey, Object columnKey) {
return contains(rowKey, columnKey)
? function.apply(fromTable.remove(rowKey, columnKey))
: null;
}
@Override
public Map row(R rowKey) {
return Maps.transformValues(fromTable.row(rowKey), function);
}
@Override
public Map column(C columnKey) {
return Maps.transformValues(fromTable.column(columnKey), function);
}
Function, Cell> cellFunction() {
return new Function, Cell>() {
@Override
public Cell apply(Cell cell) {
return immutableCell(
cell.getRowKey(), cell.getColumnKey(), function.apply(cell.getValue()));
}
};
}
@Override
Iterator> cellIterator() {
return Iterators.transform(fromTable.cellSet().iterator(), cellFunction());
}
@Override
Spliterator> cellSpliterator() {
return CollectSpliterators.map(fromTable.cellSet().spliterator(), cellFunction());
}
@Override
public Set rowKeySet() {
return fromTable.rowKeySet();
}
@Override
public Set columnKeySet() {
return fromTable.columnKeySet();
}
@Override
Collection createValues() {
return Collections2.transform(fromTable.values(), function);
}
@Override
public Map> rowMap() {
Function | | | | | | | |