All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.pdf417.detector.Detector Maven / Gradle / Ivy

/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.pdf417.detector;

import com.google.zxing.BinaryBitmap;
import com.google.zxing.DecodeHintType;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.common.BitMatrix;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;

/**
 * 

Encapsulates logic that can detect a PDF417 Code in an image, even if the * PDF417 Code is rotated or skewed, or partially obscured.

* * @author SITA Lab ([email protected]) * @author [email protected] (Daniel Switkin) * @author Guenther Grau */ public final class Detector { private static final int[] INDEXES_START_PATTERN = {0, 4, 1, 5}; private static final int[] INDEXES_STOP_PATTERN = {6, 2, 7, 3}; private static final float MAX_AVG_VARIANCE = 0.42f; private static final float MAX_INDIVIDUAL_VARIANCE = 0.8f; // B S B S B S B S Bar/Space pattern // 11111111 0 1 0 1 0 1 000 private static final int[] START_PATTERN = {8, 1, 1, 1, 1, 1, 1, 3}; // 1111111 0 1 000 1 0 1 00 1 private static final int[] STOP_PATTERN = {7, 1, 1, 3, 1, 1, 1, 2, 1}; private static final int MAX_PIXEL_DRIFT = 3; private static final int MAX_PATTERN_DRIFT = 5; // if we set the value too low, then we don't detect the correct height of the bar if the start patterns are damaged. // if we set the value too high, then we might detect the start pattern from a neighbor barcode. private static final int SKIPPED_ROW_COUNT_MAX = 25; // A PDF471 barcode should have at least 3 rows, with each row being >= 3 times the module width. Therefore it should be at least // 9 pixels tall. To be conservative, we use about half the size to ensure we don't miss it. private static final int ROW_STEP = 5; private static final int BARCODE_MIN_HEIGHT = 10; private Detector() { } /** *

Detects a PDF417 Code in an image. Only checks 0 and 180 degree rotations.

* * @param image barcode image to decode * @param hints optional hints to detector * @param multiple if true, then the image is searched for multiple codes. If false, then at most one code will * be found and returned * @return {@link PDF417DetectorResult} encapsulating results of detecting a PDF417 code * @throws NotFoundException if no PDF417 Code can be found */ public static PDF417DetectorResult detect(BinaryBitmap image, Map hints, boolean multiple) throws NotFoundException { // TODO detection improvement, tryHarder could try several different luminance thresholds/blackpoints or even // different binarizers //boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); BitMatrix bitMatrix = image.getBlackMatrix(); List barcodeCoordinates = detect(multiple, bitMatrix); if (barcodeCoordinates.isEmpty()) { bitMatrix = bitMatrix.clone(); bitMatrix.rotate180(); barcodeCoordinates = detect(multiple, bitMatrix); } return new PDF417DetectorResult(bitMatrix, barcodeCoordinates); } /** * Detects PDF417 codes in an image. Only checks 0 degree rotation * @param multiple if true, then the image is searched for multiple codes. If false, then at most one code will * be found and returned * @param bitMatrix bit matrix to detect barcodes in * @return List of ResultPoint arrays containing the coordinates of found barcodes */ private static List detect(boolean multiple, BitMatrix bitMatrix) { List barcodeCoordinates = new ArrayList<>(); int row = 0; int column = 0; boolean foundBarcodeInRow = false; while (row < bitMatrix.getHeight()) { ResultPoint[] vertices = findVertices(bitMatrix, row, column); if (vertices[0] == null && vertices[3] == null) { if (!foundBarcodeInRow) { // we didn't find any barcode so that's the end of searching break; } // we didn't find a barcode starting at the given column and row. Try again from the first column and slightly // below the lowest barcode we found so far. foundBarcodeInRow = false; column = 0; for (ResultPoint[] barcodeCoordinate : barcodeCoordinates) { if (barcodeCoordinate[1] != null) { row = (int) Math.max(row, barcodeCoordinate[1].getY()); } if (barcodeCoordinate[3] != null) { row = Math.max(row, (int) barcodeCoordinate[3].getY()); } } row += ROW_STEP; continue; } foundBarcodeInRow = true; barcodeCoordinates.add(vertices); if (!multiple) { break; } // if we didn't find a right row indicator column, then continue the search for the next barcode after the // start pattern of the barcode just found. if (vertices[2] != null) { column = (int) vertices[2].getX(); row = (int) vertices[2].getY(); } else { column = (int) vertices[4].getX(); row = (int) vertices[4].getY(); } } return barcodeCoordinates; } /** * Locate the vertices and the codewords area of a black blob using the Start * and Stop patterns as locators. * * @param matrix the scanned barcode image. * @return an array containing the vertices: * vertices[0] x, y top left barcode * vertices[1] x, y bottom left barcode * vertices[2] x, y top right barcode * vertices[3] x, y bottom right barcode * vertices[4] x, y top left codeword area * vertices[5] x, y bottom left codeword area * vertices[6] x, y top right codeword area * vertices[7] x, y bottom right codeword area */ private static ResultPoint[] findVertices(BitMatrix matrix, int startRow, int startColumn) { int height = matrix.getHeight(); int width = matrix.getWidth(); ResultPoint[] result = new ResultPoint[8]; copyToResult(result, findRowsWithPattern(matrix, height, width, startRow, startColumn, START_PATTERN), INDEXES_START_PATTERN); if (result[4] != null) { startColumn = (int) result[4].getX(); startRow = (int) result[4].getY(); } copyToResult(result, findRowsWithPattern(matrix, height, width, startRow, startColumn, STOP_PATTERN), INDEXES_STOP_PATTERN); return result; } private static void copyToResult(ResultPoint[] result, ResultPoint[] tmpResult, int[] destinationIndexes) { for (int i = 0; i < destinationIndexes.length; i++) { result[destinationIndexes[i]] = tmpResult[i]; } } private static ResultPoint[] findRowsWithPattern(BitMatrix matrix, int height, int width, int startRow, int startColumn, int[] pattern) { ResultPoint[] result = new ResultPoint[4]; boolean found = false; int[] counters = new int[pattern.length]; for (; startRow < height; startRow += ROW_STEP) { int[] loc = findGuardPattern(matrix, startColumn, startRow, width, pattern, counters); if (loc != null) { while (startRow > 0) { int[] previousRowLoc = findGuardPattern(matrix, startColumn, --startRow, width, pattern, counters); if (previousRowLoc != null) { loc = previousRowLoc; } else { startRow++; break; } } result[0] = new ResultPoint(loc[0], startRow); result[1] = new ResultPoint(loc[1], startRow); found = true; break; } } int stopRow = startRow + 1; // Last row of the current symbol that contains pattern if (found) { int skippedRowCount = 0; int[] previousRowLoc = {(int) result[0].getX(), (int) result[1].getX()}; for (; stopRow < height; stopRow++) { int[] loc = findGuardPattern(matrix, previousRowLoc[0], stopRow, width, pattern, counters); // a found pattern is only considered to belong to the same barcode if the start and end positions // don't differ too much. Pattern drift should be not bigger than two for consecutive rows. With // a higher number of skipped rows drift could be larger. To keep it simple for now, we allow a slightly // larger drift and don't check for skipped rows. if (loc != null && Math.abs(previousRowLoc[0] - loc[0]) < MAX_PATTERN_DRIFT && Math.abs(previousRowLoc[1] - loc[1]) < MAX_PATTERN_DRIFT) { previousRowLoc = loc; skippedRowCount = 0; } else { if (skippedRowCount > SKIPPED_ROW_COUNT_MAX) { break; } else { skippedRowCount++; } } } stopRow -= skippedRowCount + 1; result[2] = new ResultPoint(previousRowLoc[0], stopRow); result[3] = new ResultPoint(previousRowLoc[1], stopRow); } if (stopRow - startRow < BARCODE_MIN_HEIGHT) { Arrays.fill(result, null); } return result; } /** * @param matrix row of black/white values to search * @param column x position to start search * @param row y position to start search * @param width the number of pixels to search on this row * @param pattern pattern of counts of number of black and white pixels that are * being searched for as a pattern * @param counters array of counters, as long as pattern, to re-use * @return start/end horizontal offset of guard pattern, as an array of two ints. */ private static int[] findGuardPattern(BitMatrix matrix, int column, int row, int width, int[] pattern, int[] counters) { Arrays.fill(counters, 0, counters.length, 0); int patternStart = column; int pixelDrift = 0; // if there are black pixels left of the current pixel shift to the left, but only for MAX_PIXEL_DRIFT pixels while (matrix.get(patternStart, row) && patternStart > 0 && pixelDrift++ < MAX_PIXEL_DRIFT) { patternStart--; } int x = patternStart; int counterPosition = 0; int patternLength = pattern.length; for (boolean isWhite = false; x < width; x++) { boolean pixel = matrix.get(x, row); if (pixel != isWhite) { counters[counterPosition]++; } else { if (counterPosition == patternLength - 1) { if (patternMatchVariance(counters, pattern) < MAX_AVG_VARIANCE) { return new int[] {patternStart, x}; } patternStart += counters[0] + counters[1]; System.arraycopy(counters, 2, counters, 0, counterPosition - 1); counters[counterPosition - 1] = 0; counters[counterPosition] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } if (counterPosition == patternLength - 1 && patternMatchVariance(counters, pattern) < MAX_AVG_VARIANCE) { return new int[] {patternStart, x - 1}; } return null; } /** * Determines how closely a set of observed counts of runs of black/white * values matches a given target pattern. This is reported as the ratio of * the total variance from the expected pattern proportions across all * pattern elements, to the length of the pattern. * * @param counters observed counters * @param pattern expected pattern * @return ratio of total variance between counters and pattern compared to total pattern size */ private static float patternMatchVariance(int[] counters, int[] pattern) { int numCounters = counters.length; int total = 0; int patternLength = 0; for (int i = 0; i < numCounters; i++) { total += counters[i]; patternLength += pattern[i]; } if (total < patternLength) { // If we don't even have one pixel per unit of bar width, assume this // is too small to reliably match, so fail: return Float.POSITIVE_INFINITY; } // We're going to fake floating-point math in integers. We just need to use more bits. // Scale up patternLength so that intermediate values below like scaledCounter will have // more "significant digits". float unitBarWidth = (float) total / patternLength; float maxIndividualVariance = MAX_INDIVIDUAL_VARIANCE * unitBarWidth; float totalVariance = 0.0f; for (int x = 0; x < numCounters; x++) { int counter = counters[x]; float scaledPattern = pattern[x] * unitBarWidth; float variance = counter > scaledPattern ? counter - scaledPattern : scaledPattern - counter; if (variance > maxIndividualVariance) { return Float.POSITIVE_INFINITY; } totalVariance += variance; } return totalVariance / total; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy