All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.qrcode.decoder.DecodedBitStreamParser Maven / Gradle / Ivy

/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.qrcode.decoder;

import com.google.zxing.DecodeHintType;
import com.google.zxing.FormatException;
import com.google.zxing.common.BitSource;
import com.google.zxing.common.CharacterSetECI;
import com.google.zxing.common.DecoderResult;
import com.google.zxing.common.StringUtils;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Map;

/**
 * 

QR Codes can encode text as bits in one of several modes, and can use multiple modes * in one QR Code. This class decodes the bits back into text.

* *

See ISO 18004:2006, 6.4.3 - 6.4.7

* * @author Sean Owen */ final class DecodedBitStreamParser { /** * See ISO 18004:2006, 6.4.4 Table 5 */ private static final char[] ALPHANUMERIC_CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:".toCharArray(); private static final int GB2312_SUBSET = 1; private DecodedBitStreamParser() { } static DecoderResult decode(byte[] bytes, Version version, ErrorCorrectionLevel ecLevel, Map hints) throws FormatException { BitSource bits = new BitSource(bytes); StringBuilder result = new StringBuilder(50); List byteSegments = new ArrayList<>(1); int symbolSequence = -1; int parityData = -1; try { CharacterSetECI currentCharacterSetECI = null; boolean fc1InEffect = false; Mode mode; do { // While still another segment to read... if (bits.available() < 4) { // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here mode = Mode.TERMINATOR; } else { mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits } switch (mode) { case TERMINATOR: break; case FNC1_FIRST_POSITION: case FNC1_SECOND_POSITION: // We do little with FNC1 except alter the parsed result a bit according to the spec fc1InEffect = true; break; case STRUCTURED_APPEND: if (bits.available() < 16) { throw FormatException.getFormatInstance(); } // sequence number and parity is added later to the result metadata // Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue symbolSequence = bits.readBits(8); parityData = bits.readBits(8); break; case ECI: // Count doesn't apply to ECI int value = parseECIValue(bits); currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value); if (currentCharacterSetECI == null) { throw FormatException.getFormatInstance(); } break; case HANZI: // First handle Hanzi mode which does not start with character count // Chinese mode contains a sub set indicator right after mode indicator int subset = bits.readBits(4); int countHanzi = bits.readBits(mode.getCharacterCountBits(version)); if (subset == GB2312_SUBSET) { decodeHanziSegment(bits, result, countHanzi); } break; default: // "Normal" QR code modes: // How many characters will follow, encoded in this mode? int count = bits.readBits(mode.getCharacterCountBits(version)); switch (mode) { case NUMERIC: decodeNumericSegment(bits, result, count); break; case ALPHANUMERIC: decodeAlphanumericSegment(bits, result, count, fc1InEffect); break; case BYTE: decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments, hints); break; case KANJI: decodeKanjiSegment(bits, result, count); break; default: throw FormatException.getFormatInstance(); } break; } } while (mode != Mode.TERMINATOR); } catch (IllegalArgumentException iae) { // from readBits() calls throw FormatException.getFormatInstance(); } return new DecoderResult(bytes, result.toString(), byteSegments.isEmpty() ? null : byteSegments, ecLevel == null ? null : ecLevel.toString(), symbolSequence, parityData); } /** * See specification GBT 18284-2000 */ private static void decodeHanziSegment(BitSource bits, StringBuilder result, int count) throws FormatException { // Don't crash trying to read more bits than we have available. if (count * 13 > bits.available()) { throw FormatException.getFormatInstance(); } // Each character will require 2 bytes. Read the characters as 2-byte pairs // and decode as GB2312 afterwards byte[] buffer = new byte[2 * count]; int offset = 0; while (count > 0) { // Each 13 bits encodes a 2-byte character int twoBytes = bits.readBits(13); int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060); if (assembledTwoBytes < 0x00A00) { // In the 0xA1A1 to 0xAAFE range assembledTwoBytes += 0x0A1A1; } else { // In the 0xB0A1 to 0xFAFE range assembledTwoBytes += 0x0A6A1; } buffer[offset] = (byte) ((assembledTwoBytes >> 8) & 0xFF); buffer[offset + 1] = (byte) (assembledTwoBytes & 0xFF); offset += 2; count--; } try { result.append(new String(buffer, StringUtils.GB2312)); } catch (UnsupportedEncodingException ignored) { throw FormatException.getFormatInstance(); } } private static void decodeKanjiSegment(BitSource bits, StringBuilder result, int count) throws FormatException { // Don't crash trying to read more bits than we have available. if (count * 13 > bits.available()) { throw FormatException.getFormatInstance(); } // Each character will require 2 bytes. Read the characters as 2-byte pairs // and decode as Shift_JIS afterwards byte[] buffer = new byte[2 * count]; int offset = 0; while (count > 0) { // Each 13 bits encodes a 2-byte character int twoBytes = bits.readBits(13); int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0); if (assembledTwoBytes < 0x01F00) { // In the 0x8140 to 0x9FFC range assembledTwoBytes += 0x08140; } else { // In the 0xE040 to 0xEBBF range assembledTwoBytes += 0x0C140; } buffer[offset] = (byte) (assembledTwoBytes >> 8); buffer[offset + 1] = (byte) assembledTwoBytes; offset += 2; count--; } // Shift_JIS may not be supported in some environments: try { result.append(new String(buffer, StringUtils.SHIFT_JIS)); } catch (UnsupportedEncodingException ignored) { throw FormatException.getFormatInstance(); } } private static void decodeByteSegment(BitSource bits, StringBuilder result, int count, CharacterSetECI currentCharacterSetECI, Collection byteSegments, Map hints) throws FormatException { // Don't crash trying to read more bits than we have available. if (8 * count > bits.available()) { throw FormatException.getFormatInstance(); } byte[] readBytes = new byte[count]; for (int i = 0; i < count; i++) { readBytes[i] = (byte) bits.readBits(8); } String encoding; if (currentCharacterSetECI == null) { // The spec isn't clear on this mode; see // section 6.4.5: t does not say which encoding to assuming // upon decoding. I have seen ISO-8859-1 used as well as // Shift_JIS -- without anything like an ECI designator to // give a hint. encoding = StringUtils.guessEncoding(readBytes, hints); } else { encoding = currentCharacterSetECI.name(); } try { result.append(new String(readBytes, encoding)); } catch (UnsupportedEncodingException ignored) { throw FormatException.getFormatInstance(); } byteSegments.add(readBytes); } private static char toAlphaNumericChar(int value) throws FormatException { if (value >= ALPHANUMERIC_CHARS.length) { throw FormatException.getFormatInstance(); } return ALPHANUMERIC_CHARS[value]; } private static void decodeAlphanumericSegment(BitSource bits, StringBuilder result, int count, boolean fc1InEffect) throws FormatException { // Read two characters at a time int start = result.length(); while (count > 1) { if (bits.available() < 11) { throw FormatException.getFormatInstance(); } int nextTwoCharsBits = bits.readBits(11); result.append(toAlphaNumericChar(nextTwoCharsBits / 45)); result.append(toAlphaNumericChar(nextTwoCharsBits % 45)); count -= 2; } if (count == 1) { // special case: one character left if (bits.available() < 6) { throw FormatException.getFormatInstance(); } result.append(toAlphaNumericChar(bits.readBits(6))); } // See section 6.4.8.1, 6.4.8.2 if (fc1InEffect) { // We need to massage the result a bit if in an FNC1 mode: for (int i = start; i < result.length(); i++) { if (result.charAt(i) == '%') { if (i < result.length() - 1 && result.charAt(i + 1) == '%') { // %% is rendered as % result.deleteCharAt(i + 1); } else { // In alpha mode, % should be converted to FNC1 separator 0x1D result.setCharAt(i, (char) 0x1D); } } } } } private static void decodeNumericSegment(BitSource bits, StringBuilder result, int count) throws FormatException { // Read three digits at a time while (count >= 3) { // Each 10 bits encodes three digits if (bits.available() < 10) { throw FormatException.getFormatInstance(); } int threeDigitsBits = bits.readBits(10); if (threeDigitsBits >= 1000) { throw FormatException.getFormatInstance(); } result.append(toAlphaNumericChar(threeDigitsBits / 100)); result.append(toAlphaNumericChar((threeDigitsBits / 10) % 10)); result.append(toAlphaNumericChar(threeDigitsBits % 10)); count -= 3; } if (count == 2) { // Two digits left over to read, encoded in 7 bits if (bits.available() < 7) { throw FormatException.getFormatInstance(); } int twoDigitsBits = bits.readBits(7); if (twoDigitsBits >= 100) { throw FormatException.getFormatInstance(); } result.append(toAlphaNumericChar(twoDigitsBits / 10)); result.append(toAlphaNumericChar(twoDigitsBits % 10)); } else if (count == 1) { // One digit left over to read if (bits.available() < 4) { throw FormatException.getFormatInstance(); } int digitBits = bits.readBits(4); if (digitBits >= 10) { throw FormatException.getFormatInstance(); } result.append(toAlphaNumericChar(digitBits)); } } private static int parseECIValue(BitSource bits) throws FormatException { int firstByte = bits.readBits(8); if ((firstByte & 0x80) == 0) { // just one byte return firstByte & 0x7F; } if ((firstByte & 0xC0) == 0x80) { // two bytes int secondByte = bits.readBits(8); return ((firstByte & 0x3F) << 8) | secondByte; } if ((firstByte & 0xE0) == 0xC0) { // three bytes int secondThirdBytes = bits.readBits(16); return ((firstByte & 0x1F) << 16) | secondThirdBytes; } throw FormatException.getFormatInstance(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy