Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package org.bouncycastle.crypto.digests;
/*
The BLAKE2 cryptographic hash function was designed by Jean-
Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian
Winnerlein.
Reference Implementation and Description can be found at: https://blake2.net/
RFC: https://tools.ietf.org/html/rfc7693
This implementation does not support the Tree Hashing Mode.
For unkeyed hashing, developers adapting BLAKE2 to ASN.1 - based
message formats SHOULD use the OID tree at x = 1.3.6.1.4.1.1722.12.2.
Algorithm | Target | Collision | Hash | Hash ASN.1 |
Identifier | Arch | Security | nn | OID Suffix |
---------------+--------+-----------+------+------------+
id-blake2s128 | 32-bit | 2**64 | 16 | x.2.4 |
id-blake2s160 | 32-bit | 2**80 | 20 | x.2.5 |
id-blake2s224 | 32-bit | 2**112 | 28 | x.2.7 |
id-blake2s256 | 32-bit | 2**128 | 32 | x.2.8 |
---------------+--------+-----------+------+------------+
*/
import org.bouncycastle.crypto.ExtendedDigest;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Pack;
/**
* Implementation of the cryptographic hash function BLAKE2s.
*
* BLAKE2s offers a built-in keying mechanism to be used directly
* for authentication ("Prefix-MAC") rather than a HMAC construction.
*
* BLAKE2s offers a built-in support for a salt for randomized hashing
* and a personal string for defining a unique hash function for each application.
*
* BLAKE2s is optimized for 32-bit platforms and produces digests of any size
* between 1 and 32 bytes.
*/
public class Blake2sDigest
implements ExtendedDigest
{
/**
* BLAKE2s Initialization Vector
**/
private static final int[] blake2s_IV =
// Produced from the square root of primes 2, 3, 5, 7, 11, 13, 17, 19.
// The same as SHA-256 IV.
{
0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19
};
/**
* Message word permutations
**/
private static final byte[][] blake2s_sigma =
{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0}
};
private static final int ROUNDS = 10; // to use for Catenas H'
private static final int BLOCK_LENGTH_BYTES = 64;// bytes
// General parameters:
private int digestLength = 32; // 1- 32 bytes
private int keyLength = 0; // 0 - 32 bytes for keyed hashing for MAC
private byte[] salt = null;
private byte[] personalization = null;
private byte[] key = null;
// Tree hashing parameters:
// The Tree Hashing Mode is not supported but these are used for
// the XOF implementation
private int fanout = 1; // 0-255
private int depth = 1; // 0-255
private int leafLength= 0;
private long nodeOffset = 0L;
private int nodeDepth = 0;
private int innerHashLength = 0;
/**
* Whenever this buffer overflows, it will be processed in the compress()
* function. For performance issues, long messages will not use this buffer.
*/
private byte[] buffer = null;
/**
* Position of last inserted byte
**/
private int bufferPos = 0;// a value from 0 up to BLOCK_LENGTH_BYTES
/**
* Internal state, in the BLAKE2 paper it is called v
**/
private int[] internalState = new int[16];
/**
* State vector, in the BLAKE2 paper it is called h
**/
private int[] chainValue = null;
// counter (counts bytes): Length up to 2^64 are supported
/**
* holds least significant bits of counter
**/
private int t0 = 0;
/**
* holds most significant bits of counter
**/
private int t1 = 0;
/**
* finalization flag, for last block: ~0
**/
private int f0 = 0;
// For Tree Hashing Mode, not used here:
// private long f1 = 0L; // finalization flag, for last node: ~0L
/**
* BLAKE2s-256 for hashing.
*/
public Blake2sDigest()
{
this(256);
}
public Blake2sDigest(Blake2sDigest digest)
{
this.bufferPos = digest.bufferPos;
this.buffer = Arrays.clone(digest.buffer);
this.keyLength = digest.keyLength;
this.key = Arrays.clone(digest.key);
this.digestLength = digest.digestLength;
this.internalState = Arrays.clone(internalState);
this.chainValue = Arrays.clone(digest.chainValue);
this.t0 = digest.t0;
this.t1 = digest.t1;
this.f0 = digest.f0;
this.salt = Arrays.clone(digest.salt);
this.personalization = Arrays.clone(digest.personalization);
this.fanout = digest.fanout;
this.depth = digest.depth;
this.leafLength = digest.leafLength;
this.nodeOffset = digest.nodeOffset;
this.nodeDepth = digest.nodeDepth;
this.innerHashLength = digest.innerHashLength;
}
/**
* BLAKE2s for hashing.
*
* @param digestBits the desired digest length in bits. Must be a multiple of 8 and less than 256.
*/
public Blake2sDigest(int digestBits)
{
if (digestBits < 8 || digestBits > 256 || digestBits % 8 != 0)
{
throw new IllegalArgumentException(
"BLAKE2s digest bit length must be a multiple of 8 and not greater than 256");
}
digestLength = digestBits / 8;
init(null, null, null);
}
/**
* BLAKE2s for authentication ("Prefix-MAC mode").
*
* After calling the doFinal() method, the key will remain to be used for
* further computations of this instance. The key can be overwritten using
* the clearKey() method.
*
* @param key a key up to 32 bytes or null
*/
public Blake2sDigest(byte[] key)
{
init(null, null, key);
}
/**
* BLAKE2s with key, required digest length, salt and personalization.
*
* After calling the doFinal() method, the key, the salt and the personal
* string will remain and might be used for further computations with this
* instance. The key can be overwritten using the clearKey() method, the
* salt (pepper) can be overwritten using the clearSalt() method.
*
* @param key a key up to 32 bytes or null
* @param digestBytes from 1 up to 32 bytes
* @param salt 8 bytes or null
* @param personalization 8 bytes or null
*/
public Blake2sDigest(byte[] key, int digestBytes, byte[] salt,
byte[] personalization)
{
if (digestBytes < 1 || digestBytes > 32)
{
throw new IllegalArgumentException(
"Invalid digest length (required: 1 - 32)");
}
digestLength = digestBytes;
init(salt, personalization, key);
}
// XOF root hash parameters
Blake2sDigest(int digestBytes, byte[] key, byte[] salt, byte[] personalization, long offset) {
digestLength = digestBytes;
nodeOffset = offset;
init(salt, personalization, key);
}
// XOF internal hash parameters
Blake2sDigest(int digestBytes, int hashLength, long offset) {
digestLength = digestBytes;
nodeOffset = offset;
fanout = 0;
depth = 0;
leafLength = hashLength;
innerHashLength = hashLength;
nodeDepth = 0;
init(null, null, null);
}
// initialize the digest's parameters
private void init(byte[] salt, byte[] personalization, byte[] key)
{
buffer = new byte[BLOCK_LENGTH_BYTES];
if (key != null && key.length > 0)
{
if (key.length > 32)
{
throw new IllegalArgumentException(
"Keys > 32 bytes are not supported");
}
this.key = new byte[key.length];
System.arraycopy(key, 0, this.key, 0, key.length);
keyLength = key.length;
System.arraycopy(key, 0, buffer, 0, key.length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
if (chainValue == null)
{
chainValue = new int[8];
chainValue[0] = blake2s_IV[0]
^ (digestLength | (keyLength << 8) | ((fanout << 16) | (depth << 24)));
chainValue[1] = blake2s_IV[1] ^ leafLength;
int nofHi = (int) (nodeOffset >> 32);
int nofLo = (int) nodeOffset;
chainValue[2] = blake2s_IV[2] ^ nofLo;
chainValue[3] = blake2s_IV[3] ^ (nofHi |
(nodeDepth << 16) | (innerHashLength << 24));
chainValue[4] = blake2s_IV[4];
chainValue[5] = blake2s_IV[5];
if (salt != null)
{
if (salt.length != 8)
{
throw new IllegalArgumentException(
"Salt length must be exactly 8 bytes");
}
this.salt = new byte[8];
System.arraycopy(salt, 0, this.salt, 0, salt.length);
chainValue[4] ^= Pack.littleEndianToInt(salt, 0);
chainValue[5] ^= Pack.littleEndianToInt(salt, 4);
}
chainValue[6] = blake2s_IV[6];
chainValue[7] = blake2s_IV[7];
if (personalization != null)
{
if (personalization.length != 8)
{
throw new IllegalArgumentException(
"Personalization length must be exactly 8 bytes");
}
this.personalization = new byte[8];
System.arraycopy(personalization, 0, this.personalization, 0,
personalization.length);
chainValue[6] ^= Pack.littleEndianToInt(personalization, 0);
chainValue[7] ^= Pack.littleEndianToInt(personalization, 4);
}
}
}
private void initializeInternalState()
{
// initialize v:
System.arraycopy(chainValue, 0, internalState, 0, chainValue.length);
System.arraycopy(blake2s_IV, 0, internalState, chainValue.length, 4);
internalState[12] = t0 ^ blake2s_IV[4];
internalState[13] = t1 ^ blake2s_IV[5];
internalState[14] = f0 ^ blake2s_IV[6];
internalState[15] = blake2s_IV[7];// ^ f1 with f1 = 0
}
/**
* Update the message digest with a single byte.
*
* @param b the input byte to be entered.
*/
public void update(byte b)
{
int remainingLength; // left bytes of buffer
// process the buffer if full else add to buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength == 0)
{ // full buffer
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^32
t1++;
}
compress(buffer, 0);
Arrays.fill(buffer, (byte)0);// clear buffer
buffer[0] = b;
bufferPos = 1;
}
else
{
buffer[bufferPos] = b;
bufferPos++;
}
}
/**
* Update the message digest with a block of bytes.
*
* @param message the byte array containing the data.
* @param offset the offset into the byte array where the data starts.
* @param len the length of the data.
*/
public void update(byte[] message, int offset, int len)
{
if (message == null || len == 0)
{
return;
}
int remainingLength = 0; // left bytes of buffer
if (bufferPos != 0)
{ // commenced, incomplete buffer
// complete the buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength < len)
{ // full buffer + at least 1 byte
System.arraycopy(message, offset, buffer, bufferPos,
remainingLength);
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^32
t1++;
}
compress(buffer, 0);
bufferPos = 0;
Arrays.fill(buffer, (byte)0);// clear buffer
}
else
{
System.arraycopy(message, offset, buffer, bufferPos, len);
bufferPos += len;
return;
}
}
// process blocks except last block (also if last block is full)
int messagePos;
int blockWiseLastPos = offset + len - BLOCK_LENGTH_BYTES;
for (messagePos = offset + remainingLength;
messagePos < blockWiseLastPos;
messagePos += BLOCK_LENGTH_BYTES)
{ // block wise 64 bytes
// without buffer:
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{
t1++;
}
compress(message, messagePos);
}
// fill the buffer with left bytes, this might be a full block
System.arraycopy(message, messagePos, buffer, 0, offset + len
- messagePos);
bufferPos += offset + len - messagePos;
}
/**
* Close the digest, producing the final digest value. The doFinal() call
* leaves the digest reset. Key, salt and personal string remain.
*
* @param out the array the digest is to be copied into.
* @param outOffset the offset into the out array the digest is to start at.
*/
public int doFinal(byte[] out, int outOffset)
{
f0 = 0xFFFFFFFF;
t0 += bufferPos;
// bufferPos may be < 64, so (t0 == 0) does not work
// for 2^32 < message length > 2^32 - 63
if ((t0 < 0) && (bufferPos > -t0))
{
t1++;
}
compress(buffer, 0);
Arrays.fill(buffer, (byte)0);// Holds eventually the key if input is null
Arrays.fill(internalState, 0);
for (int i = 0; i < chainValue.length && (i * 4 < digestLength); i++)
{
byte[] bytes = Pack.intToLittleEndian(chainValue[i]);
if (i * 4 < digestLength - 4)
{
System.arraycopy(bytes, 0, out, outOffset + i * 4, 4);
}
else
{
System.arraycopy(bytes, 0, out, outOffset + i * 4,
digestLength - (i * 4));
}
}
Arrays.fill(chainValue, 0);
reset();
return digestLength;
}
/**
* Reset the digest back to its initial state. The key, the salt and the
* personal string will remain for further computations.
*/
public void reset()
{
bufferPos = 0;
f0 = 0;
t0 = 0;
t1 = 0;
chainValue = null;
Arrays.fill(buffer, (byte)0);
if (key != null)
{
System.arraycopy(key, 0, buffer, 0, key.length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
init(this.salt, this.personalization, this.key);
}
private void compress(byte[] message, int messagePos)
{
initializeInternalState();
int[] m = new int[16];
for (int j = 0; j < 16; j++)
{
m[j] = Pack.littleEndianToInt(message, messagePos + j * 4);
}
for (int round = 0; round < ROUNDS; round++)
{
// G apply to columns of internalState:m[blake2s_sigma[round][2 *
// blockPos]] /+1
G(m[blake2s_sigma[round][0]], m[blake2s_sigma[round][1]], 0, 4, 8, 12);
G(m[blake2s_sigma[round][2]], m[blake2s_sigma[round][3]], 1, 5, 9, 13);
G(m[blake2s_sigma[round][4]], m[blake2s_sigma[round][5]], 2, 6, 10, 14);
G(m[blake2s_sigma[round][6]], m[blake2s_sigma[round][7]], 3, 7, 11, 15);
// G apply to diagonals of internalState:
G(m[blake2s_sigma[round][8]], m[blake2s_sigma[round][9]], 0, 5, 10, 15);
G(m[blake2s_sigma[round][10]], m[blake2s_sigma[round][11]], 1, 6, 11, 12);
G(m[blake2s_sigma[round][12]], m[blake2s_sigma[round][13]], 2, 7, 8, 13);
G(m[blake2s_sigma[round][14]], m[blake2s_sigma[round][15]], 3, 4, 9, 14);
}
// update chain values:
for (int offset = 0; offset < chainValue.length; offset++)
{
chainValue[offset] = chainValue[offset] ^ internalState[offset] ^ internalState[offset + 8];
}
}
private void G(int m1, int m2, int posA, int posB, int posC, int posD)
{
internalState[posA] = internalState[posA] + internalState[posB] + m1;
internalState[posD] = rotr32(internalState[posD] ^ internalState[posA], 16);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = rotr32(internalState[posB] ^ internalState[posC], 12);
internalState[posA] = internalState[posA] + internalState[posB] + m2;
internalState[posD] = rotr32(internalState[posD] ^ internalState[posA], 8);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = rotr32(internalState[posB] ^ internalState[posC], 7);
}
private int rotr32(int x, int rot)
{
return x >>> rot | (x << (32 - rot));
}
/**
* Return the algorithm name.
*
* @return the algorithm name
*/
public String getAlgorithmName()
{
return "BLAKE2s";
}
/**
* Return the size in bytes of the digest produced by this message digest.
*
* @return the size in bytes of the digest produced by this message digest.
*/
public int getDigestSize()
{
return digestLength;
}
/**
* Return the size in bytes of the internal buffer the digest applies its
* compression function to.
*
* @return byte length of the digest's internal buffer.
*/
public int getByteLength()
{
return BLOCK_LENGTH_BYTES;
}
/**
* Overwrite the key if it is no longer used (zeroization).
*/
public void clearKey()
{
if (key != null)
{
Arrays.fill(key, (byte)0);
Arrays.fill(buffer, (byte)0);
}
}
/**
* Overwrite the salt (pepper) if it is secret and no longer used
* (zeroization).
*/
public void clearSalt()
{
if (salt != null)
{
Arrays.fill(salt, (byte)0);
}
}
}