org.apache.xmlgraphics.util.dijkstra.DijkstraAlgorithm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of org.apache.fop Show documentation
Show all versions of org.apache.fop Show documentation
The core maven build properties
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* $Id: DijkstraAlgorithm.java 1681108 2015-05-22 13:26:12Z ssteiner $ */
package org.apache.xmlgraphics.util.dijkstra;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;
/**
* This is an implementation of Dijkstra's algorithm to find the shortest path for a directed
* graph with non-negative edge weights.
* @see WikiPedia on Dijkstra's
* Algorithm
*/
public class DijkstraAlgorithm {
/** Infinity value for distances. */
public static final int INFINITE = Integer.MAX_VALUE;
/** Compares penalties between two possible destinations. */
private final Comparator penaltyComparator = new Comparator() {
public int compare(Object left, Object right) {
int leftPenalty = getLowestPenalty((Vertex)left);
int rightPenalty = getLowestPenalty((Vertex)right);
if (leftPenalty < rightPenalty) {
return -1;
} else if (leftPenalty == rightPenalty) {
return ((Comparable)left).compareTo(right);
} else {
return 1;
}
}
};
/** The directory of edges */
private EdgeDirectory edgeDirectory;
/** The priority queue for all vertices under inspection, ordered by penalties/distances. */
private TreeSet priorityQueue = new TreeSet(penaltyComparator);
//Set
/** The set of vertices for which the lowest penalty has been found. */
private Set finishedVertices = new java.util.HashSet();
//Set
/** The currently known lowest penalties for all vertices. */
private Map lowestPenalties = new java.util.HashMap();
//Map
/** Map of all predecessors in the spanning tree of best routes. */
private Map predecessors = new java.util.HashMap();
//Map
/**
* Main Constructor.
* @param edgeDirectory the edge directory this instance should work on
*/
public DijkstraAlgorithm(EdgeDirectory edgeDirectory) {
this.edgeDirectory = edgeDirectory;
}
/**
* Returns the penalty between two vertices.
* @param start the start vertex
* @param end the end vertex
* @return the penalty between two vertices, or 0 if no single edge between the two vertices
* exists.
*/
protected int getPenalty(Vertex start, Vertex end) {
return this.edgeDirectory.getPenalty(start, end);
}
/**
* Returns an iterator over all valid destinations for a given vertex.
* @param origin the origin from which to search for destinations
* @return the iterator over all valid destinations for a given vertex
*/
protected Iterator getDestinations(Vertex origin) {
return this.edgeDirectory.getDestinations(origin);
}
private void reset() {
finishedVertices.clear();
priorityQueue.clear();
lowestPenalties.clear();
predecessors.clear();
}
/**
* Run Dijkstra's shortest path algorithm. After this method is finished you can use
* {@link #getPredecessor(Vertex)} to reconstruct the best/shortest path starting from the
* destination backwards.
* @param start the starting vertex
* @param destination the destination vertex.
*/
public void execute(Vertex start, Vertex destination) {
if (start == null || destination == null) {
throw new NullPointerException("start and destination may not be null");
}
reset();
setShortestDistance(start, 0);
priorityQueue.add(start);
// the current node
Vertex u;
// extract the vertex with the shortest distance
while (priorityQueue.size() > 0) {
u = (Vertex)priorityQueue.first();
priorityQueue.remove(u);
if (destination.equals(u)) {
//Destination reached
break;
}
finishedVertices.add(u);
relax(u);
}
}
/**
* Compute new lowest penalties for neighboring vertices. Update the lowest penalties and the
* predecessor map if a better solution is found.
* @param u the vertex to process
*/
private void relax(Vertex u) {
Iterator iter = getDestinations(u);
while (iter.hasNext()) {
Vertex v = (Vertex)iter.next();
// skip node already settled
if (isFinished(v)) {
continue;
}
int shortDist = getLowestPenalty(u) + getPenalty(u, v);
if (shortDist < getLowestPenalty(v)) {
// assign new shortest distance and mark unsettled
setShortestDistance(v, shortDist);
// assign predecessor in shortest path
setPredecessor(v, u);
}
}
}
private void setPredecessor(Vertex a, Vertex b) {
predecessors.put(a, b);
}
/**
* Indicates whether a shortest route to a vertex has been found.
* @param v the vertex
* @return true if the shortest route to this vertex has been found.
*/
private boolean isFinished(Vertex v) {
return finishedVertices.contains(v);
}
private void setShortestDistance(Vertex vertex, int distance) {
//Remove so it is inserted at the right position after the lowest penalty changes for this
//vertex.
priorityQueue.remove(vertex);
//Update the lowest penalty.
lowestPenalties.put(vertex, distance);
//Insert the vertex again at the new position based on the lowest penalty
priorityQueue.add(vertex);
}
/**
* Returns the lowest penalty from the start point to a given vertex.
* @param vertex the vertex
* @return the lowest penalty or {@link DijkstraAlgorithm#INFINITE} if there is no route to
* the destination.
*/
public int getLowestPenalty(Vertex vertex) {
Integer d = ((Integer)lowestPenalties.get(vertex));
return (d == null) ? INFINITE : d;
}
/**
* Returns the vertex's predecessor on the shortest path.
* @param vertex the vertex for which to find the predecessor
* @return the vertex's predecessor on the shortest path, or
* null
if there is no route to the destination.
*/
public Vertex getPredecessor(Vertex vertex) {
return (Vertex)predecessors.get(vertex);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy