All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.hfg.math.Combinations Maven / Gradle / Ivy

There is a newer version: 20240423
Show newest version
package com.hfg.math;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Set;

import com.hfg.util.collection.CollectionUtil;

//------------------------------------------------------------------------------
/**
 Generate combinations of the specified size using the specified list of objects.
 A combination is a set of objects in which position (or order) is NOT important.
 
@author J. Alex Taylor, hairyfatguy.com
*/ //------------------------------------------------------------------------------ // com.hfg Library // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // J. Alex Taylor, President, Founder, CEO, COO, CFO, OOPS hairyfatguy.com // [email protected] //------------------------------------------------------------------------------ public class Combinations { //--------------------------------------------------------------------------- public static> List> combinations(List inObjects, int inCombinationSize) { List> combinations = null; if (CollectionUtil.hasValues(inObjects)) { if (inCombinationSize == 1) { combinations = new ArrayList<>(inObjects.size()); for (T obj : inObjects) { combinations.add(Collections.singletonList(obj)); } } else { combinations = new ArrayList<>(); for (int i = 0; i <= inObjects.size() - inCombinationSize; i++) { T firstItem = inObjects.get(i); List> additionalItems = combinations(inObjects.subList(i + 1, inObjects.size()), inCombinationSize - 1); for (List additional : additionalItems) { List combination = new ArrayList<>(); combination.add(firstItem); combination.addAll(additional); combinations.add(combination); } } } } return combinations; } //--------------------------------------------------------------------------- public static int countOfCombinationsWithRepetition(List inObjects, int inCombinationSize) { int numCombinations = 0; if (CollectionUtil.hasValues(inObjects)) { if (inCombinationSize == 1) { // Special case if combination size is 1 numCombinations = inObjects.size(); } else { int numeratorFactorial = inObjects.size() + inCombinationSize - 1; // (n + r - 1)! int denominatorFactorial = inObjects.size() - 1; // (n - 1)! long factorialDivisionResult = 1; for (int i = denominatorFactorial + 1; i <= numeratorFactorial; i++) { factorialDivisionResult *= i; } numCombinations = (int) (factorialDivisionResult / MathUtil.factorial(inCombinationSize)); } } return numCombinations; } //--------------------------------------------------------------------------- public static> List combinationsWithRepetition(List inObjects, int inCombinationSize) { List combinations = null; if (CollectionUtil.hasValues(inObjects)) { if (inCombinationSize == 1) { // Special case if combination size is 1 combinations = new ArrayList<>(inObjects.size()); for (T obj : inObjects) { T[] combination = (T[]) Array.newInstance(inObjects.get(0).getClass(), inCombinationSize); combination[0] = obj; combinations.add(combination); } } else { int numeratorFactorial = inObjects.size() + inCombinationSize - 1; // (n + r - 1)! int denominatorFactorial = inObjects.size() - 1; // (n - 1)! long factorialDivisionResult = 1; for (int i = denominatorFactorial + 1; i <= numeratorFactorial; i++) { factorialDivisionResult *= i; } int numCombinations = (int) (factorialDivisionResult / MathUtil.factorial(inCombinationSize)); combinations = new ArrayList<>(numCombinations); innerCombinationWithRepetition(inObjects, (T[]) Array.newInstance(inObjects.get(0).getClass(), inCombinationSize), 0, inCombinationSize, 0, inObjects.size() - 1, combinations); } } return combinations; } //--------------------------------------------------------------------------- private static > void innerCombinationWithRepetition(List inObjects, T[] inChosen, int inIndex, int inCombinationSize, int inStartIdx, int inEndIdx, List inCombinations) { // Since index has become r, current combination is ready to be printed, print if (inIndex == inCombinationSize) { inCombinations.add(inChosen.clone()); } else { // One by one choose all elements (without considering // the fact whether element is already chosen or not) // and recur for (int i = inStartIdx; i <= inEndIdx; i++) { inChosen[inIndex] = inObjects.get(i); innerCombinationWithRepetition(inObjects, inChosen, inIndex + 1, inCombinationSize, i, inEndIdx, inCombinations); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy