
com.hazelcast.internal.cluster.fd.PhiAccrualFailureDetector Maven / Gradle / Ivy
The newest version!
/*
* Copyright (C) 2009-2017 Lightbend Inc.
* Copyright (c) 2017-2024, Hazelcast, Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.hazelcast.internal.cluster.fd;
import java.util.LinkedList;
import static com.hazelcast.internal.util.Preconditions.checkNotNegative;
import static com.hazelcast.internal.util.Preconditions.checkPositive;
/**
* Port of Akka's PhiAccrualFailureDetector.scala
*
* Implementation of 'The Phi Accrual Failure Detector' by Hayashibara et al. as defined in their paper.
*
* The suspicion level of failure is given by a value called φ (phi).
* The basic idea of the φ failure detector is to express the value of φ on a scale that
* is dynamically adjusted to reflect current network conditions. A configurable
* threshold is used to decide if φ
is considered to be a failure.
*
* The value of φ
is calculated as:
*
*
* φ = -log10(1 - F(timeSinceLastHeartbeat)
*
* where F is the cumulative distribution function of a normal distribution with mean
* and standard deviation estimated from historical heartbeat inter-arrival times.
*/
public class PhiAccrualFailureDetector implements FailureDetector {
static final long NO_HEARTBEAT_TIMESTAMP = -1;
private final double threshold;
private final double minStdDeviationMillis;
private final long acceptableHeartbeatPauseMillis;
private final HeartbeatHistory heartbeatHistory;
private volatile long lastHeartbeatMillis = NO_HEARTBEAT_TIMESTAMP;
/**
* @param threshold A low threshold is prone to generate many wrong suspicions but ensures
* a quick detection in the event of a real crash. Conversely, a high threshold
* generates fewer mistakes but needs more time to detect actual crashes
* @param maxSampleSize Number of samples to use for calculation of mean and standard deviation of
* inter-arrival times.
* @param minStdDeviationMillis Minimum standard deviation to use for the normal distribution used when
* calculating phi. Too low standard deviation might result in too much sensitivity
* for sudden, but normal, deviations in heartbeat inter arrival times.
* @param acceptableHeartbeatPauseMillis Duration corresponding to number of potentially lost/delayed
* heartbeats that will be accepted before considering it to be an anomaly.
* This margin is important to be able to survive sudden, occasional, pauses
* in heartbeat arrivals, due to for example garbage collect or network drop.
* @param firstHeartbeatEstimateMillis Bootstrap the stats with heartbeats that corresponds to this duration,
* with a with rather high standard deviation (since environment is unknown
* in the beginning)
*/
public PhiAccrualFailureDetector(double threshold, int maxSampleSize, double minStdDeviationMillis,
long acceptableHeartbeatPauseMillis, long firstHeartbeatEstimateMillis) {
this.threshold = checkPositive(threshold, "Threshold must be positive: " + threshold);
this.minStdDeviationMillis = checkPositive(minStdDeviationMillis, "Minimum standard deviation must be positive: "
+ minStdDeviationMillis);
this.acceptableHeartbeatPauseMillis = checkNotNegative(acceptableHeartbeatPauseMillis,
"Acceptable heartbeat pause millis must be >= 0: " + acceptableHeartbeatPauseMillis);
checkPositive("firstHeartbeatEstimateMillis", firstHeartbeatEstimateMillis);
heartbeatHistory = new HeartbeatHistory(maxSampleSize);
firstHeartbeat(firstHeartbeatEstimateMillis);
}
// guess statistics for first heartbeat,
// important so that connections with only one heartbeat becomes unavailable
// bootstrap with 2 entries with rather high standard deviation
@SuppressWarnings("checkstyle:magicnumber")
private void firstHeartbeat(long firstHeartbeatEstimateMillis) {
long stdDeviationMillis = firstHeartbeatEstimateMillis / 4;
heartbeatHistory.add(firstHeartbeatEstimateMillis - stdDeviationMillis);
heartbeatHistory.add(firstHeartbeatEstimateMillis + stdDeviationMillis);
}
private double ensureValidStdDeviation(double stdDeviationMillis) {
return Math.max(stdDeviationMillis, minStdDeviationMillis);
}
/**
* The suspicion level of the accrual failure detector.
*
* If a connection does not have any records in failure detector then it is
* considered healthy.
*/
private double phi(long timestampMillis) {
long timeDiffMillis;
double meanMillis;
double stdDeviationMillis;
synchronized (heartbeatHistory) {
long lastTimestampMillis = lastHeartbeatMillis;
if (lastTimestampMillis == NO_HEARTBEAT_TIMESTAMP) {
return 0.0;
}
timeDiffMillis = timestampMillis - lastTimestampMillis;
meanMillis = heartbeatHistory.mean();
stdDeviationMillis = ensureValidStdDeviation(heartbeatHistory.stdDeviation());
}
return phi(timeDiffMillis, meanMillis + acceptableHeartbeatPauseMillis, stdDeviationMillis);
}
/**
* Calculation of phi, derived from the Cumulative distribution function for
* N(mean, stdDeviation) normal distribution, given by
* 1.0 / (1.0 + math.exp(-y * (1.5976 + 0.070566 * y * y)))
* where y = (x - mean) / standard_deviation
* This is an approximation defined in β Mathematics Handbook (Logistic approximation).
* Error is 0.00014 at +- 3.16
* The calculated value is equivalent to -log10(1 - CDF(y))
*/
@SuppressWarnings("checkstyle:magicnumber")
private static double phi(long timeDiffMillis, double meanMillis, double stdDeviationMillis) {
double y = (timeDiffMillis - meanMillis) / stdDeviationMillis;
double e = Math.exp(-y * (1.5976 + 0.070566 * y * y));
if (timeDiffMillis > meanMillis) {
return -Math.log10(e / (1.0 + e));
} else {
return -Math.log10(1.0 - 1.0 / (1.0 + e));
}
}
@Override
public boolean isAlive(long timestampMillis) {
double phi = phi(timestampMillis);
return phi < threshold;
}
@Override
public void heartbeat(long timestampMillis) {
synchronized (heartbeatHistory) {
long lastTimestampMillis = getAndSetLastHeartbeat(timestampMillis);
if (lastTimestampMillis == NO_HEARTBEAT_TIMESTAMP) {
return;
}
if (isAlive(timestampMillis)) {
heartbeatHistory.add(timestampMillis - lastTimestampMillis);
}
}
}
private long getAndSetLastHeartbeat(long timestampMillis) {
long lastTimestampMillis = lastHeartbeatMillis;
lastHeartbeatMillis = timestampMillis;
return lastTimestampMillis;
}
@Override
public long lastHeartbeat() {
return lastHeartbeatMillis;
}
@Override
public double suspicionLevel(long timestamp) {
return phi(timestamp);
}
/**
* Holds the heartbeat statistics for a specific member.
* It is capped by the number of samples specified in `maxSampleSize`.
*
* The stats (mean, variance, stdDeviation) are not defined
* for empty HeartbeatHistory, i.e. throws ArithmeticException.
*/
private static class HeartbeatHistory {
private final int maxSampleSize;
private final LinkedList intervals = new LinkedList<>();
private long intervalSum;
private long squaredIntervalSum;
HeartbeatHistory(int maxSampleSize) {
if (maxSampleSize < 1) {
throw new IllegalArgumentException("Sample size must be >= 1 : " + maxSampleSize);
}
this.maxSampleSize = maxSampleSize;
}
double mean() {
return (double) intervalSum / intervals.size();
}
double variance() {
double mean = mean();
return ((double) squaredIntervalSum / intervals.size()) - (mean * mean);
}
double stdDeviation() {
return Math.sqrt(variance());
}
void add(long interval) {
if (intervals.size() >= maxSampleSize) {
dropOldest();
}
intervals.add(interval);
intervalSum += interval;
squaredIntervalSum += pow2(interval);
}
private void dropOldest() {
long dropped = intervals.pollFirst();
intervalSum -= dropped;
squaredIntervalSum -= pow2(dropped);
}
private static long pow2(long x) {
return x * x;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy