
com.hazelcast.jet.impl.pipeline.transform.GroupTransform Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2008-2024, Hazelcast, Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.hazelcast.jet.impl.pipeline.transform;
import com.hazelcast.function.BiFunctionEx;
import com.hazelcast.function.FunctionEx;
import com.hazelcast.jet.aggregate.AggregateOperation;
import com.hazelcast.jet.core.Vertex;
import com.hazelcast.jet.impl.pipeline.PipelineImpl.Context;
import com.hazelcast.jet.impl.pipeline.Planner;
import com.hazelcast.jet.impl.pipeline.Planner.PlannerVertex;
import javax.annotation.Nonnull;
import java.io.Serial;
import java.util.List;
import static com.hazelcast.function.Functions.entryKey;
import static com.hazelcast.jet.core.Edge.between;
import static com.hazelcast.jet.core.Partitioner.HASH_CODE;
import static com.hazelcast.jet.core.Vertex.LOCAL_PARALLELISM_USE_DEFAULT;
import static com.hazelcast.jet.core.processor.Processors.accumulateByKeyP;
import static com.hazelcast.jet.core.processor.Processors.aggregateByKeyP;
import static com.hazelcast.jet.core.processor.Processors.combineByKeyP;
import static com.hazelcast.jet.impl.pipeline.transform.AggregateTransform.FIRST_STAGE_VERTEX_NAME_SUFFIX;
public class GroupTransform extends AbstractTransform {
@Serial
private static final long serialVersionUID = 1L;
@Nonnull
private final List> groupKeyFns;
@Nonnull
private final AggregateOperation aggrOp;
@Nonnull
private final BiFunctionEx super K, ? super R, OUT> mapToOutputFn;
public GroupTransform(
@Nonnull List upstream,
@Nonnull List> groupKeyFns,
@Nonnull AggregateOperation aggrOp,
@Nonnull BiFunctionEx super K, ? super R, OUT> mapToOutputFn
) {
super(createName(upstream), upstream);
this.groupKeyFns = groupKeyFns;
this.aggrOp = aggrOp;
this.mapToOutputFn = mapToOutputFn;
}
private static String createName(@Nonnull List upstream) {
return upstream.size() == 1
? "group-and-aggregate"
: upstream.size() + "-way cogroup-and-aggregate";
}
@Override
public void addToDag(Planner p, Context context) {
determineLocalParallelism(LOCAL_PARALLELISM_USE_DEFAULT, context, false);
if (shouldRebalanceAnyInput() || aggrOp.combineFn() == null) {
addToDagSingleStage(p);
} else {
addToDagTwoStage(p);
}
}
// --------- ---------
// | source0 | ... | sourceN |
// --------- ---------
// | |
// distributed distributed
// partitioned partitioned
// | |
// \ /
// ----\ /------
// v v
// -----------------
// | aggregateByKeyP |
// -----------------
private void addToDagSingleStage(Planner p) {
PlannerVertex pv = p.addVertex(this, name(), determinedLocalParallelism(),
aggregateByKeyP(groupKeyFns, aggrOp, mapToOutputFn));
p.addEdges(this, pv.v, (e, ord) -> e.distributed().partitioned(groupKeyFns.get(ord)));
}
// --------- ---------
// | source0 | ... | sourceN |
// --------- ---------
// | |
// local local
// partitioned partitioned
// v v
// --------------------
// | accumulateByKeyP |
// --------------------
// |
// distributed
// partitioned
// v
// ---------------
// | combineByKeyP |
// ---------------
private void addToDagTwoStage(Planner p) {
List> groupKeyFns = this.groupKeyFns;
Vertex v1 = p.dag.newVertex(name() + FIRST_STAGE_VERTEX_NAME_SUFFIX, accumulateByKeyP(groupKeyFns, aggrOp))
.localParallelism(determinedLocalParallelism());
PlannerVertex pv2 = p.addVertex(this, name(), determinedLocalParallelism(),
combineByKeyP(aggrOp, mapToOutputFn));
p.addEdges(this, v1, (e, ord) -> e.partitioned(groupKeyFns.get(ord), HASH_CODE));
p.dag.edge(between(v1, pv2.v).distributed().partitioned(entryKey()));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy