All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.hazelcast.org.apache.calcite.plan.volcano.VolcanoPlanner Maven / Gradle / Ivy

There is a newer version: 5.5.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.hazelcast.org.apache.calcite.plan.volcano;

import com.hazelcast.org.apache.calcite.config.CalciteConnectionConfig;
import com.hazelcast.org.apache.calcite.config.CalciteSystemProperty;
import com.hazelcast.org.apache.calcite.plan.AbstractRelOptPlanner;
import com.hazelcast.org.apache.calcite.plan.Context;
import com.hazelcast.org.apache.calcite.plan.Convention;
import com.hazelcast.org.apache.calcite.plan.ConventionTraitDef;
import com.hazelcast.org.apache.calcite.plan.RelOptCost;
import com.hazelcast.org.apache.calcite.plan.RelOptCostFactory;
import com.hazelcast.org.apache.calcite.plan.RelOptLattice;
import com.hazelcast.org.apache.calcite.plan.RelOptMaterialization;
import com.hazelcast.org.apache.calcite.plan.RelOptMaterializations;
import com.hazelcast.org.apache.calcite.plan.RelOptPlanner;
import com.hazelcast.org.apache.calcite.plan.RelOptRule;
import com.hazelcast.org.apache.calcite.plan.RelOptRuleCall;
import com.hazelcast.org.apache.calcite.plan.RelOptRuleOperand;
import com.hazelcast.org.apache.calcite.plan.RelOptSchema;
import com.hazelcast.org.apache.calcite.plan.RelOptTable;
import com.hazelcast.org.apache.calcite.plan.RelOptUtil;
import com.hazelcast.org.apache.calcite.plan.RelTrait;
import com.hazelcast.org.apache.calcite.plan.RelTraitDef;
import com.hazelcast.org.apache.calcite.plan.RelTraitSet;
import com.hazelcast.org.apache.calcite.rel.PhysicalNode;
import com.hazelcast.org.apache.calcite.rel.RelNode;
import com.hazelcast.org.apache.calcite.rel.convert.Converter;
import com.hazelcast.org.apache.calcite.rel.convert.ConverterRule;
import com.hazelcast.org.apache.calcite.rel.externalize.RelWriterImpl;
import com.hazelcast.org.apache.calcite.rel.metadata.CyclicMetadataException;
import com.hazelcast.org.apache.calcite.rel.metadata.JaninoRelMetadataProvider;
import com.hazelcast.org.apache.calcite.rel.metadata.RelMdUtil;
import com.hazelcast.org.apache.calcite.rel.metadata.RelMetadataProvider;
import com.hazelcast.org.apache.calcite.rel.metadata.RelMetadataQuery;
import com.hazelcast.org.apache.calcite.rel.rules.TransformationRule;
import com.hazelcast.org.apache.calcite.rel.type.RelDataType;
import com.hazelcast.org.apache.calcite.runtime.Hook;
import com.hazelcast.org.apache.calcite.sql.SqlExplainLevel;
import com.hazelcast.org.apache.calcite.util.Litmus;
import com.hazelcast.org.apache.calcite.util.Pair;
import com.hazelcast.org.apache.calcite.util.Util;

import com.hazelcast.com.google.common.collect.ImmutableList;
import com.hazelcast.com.google.common.collect.LinkedListMultimap;
import com.hazelcast.com.google.common.collect.Multimap;

import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * VolcanoPlanner optimizes queries by transforming expressions selectively
 * according to a dynamic programming algorithm.
 */
public class VolcanoPlanner extends AbstractRelOptPlanner {

  //~ Instance fields --------------------------------------------------------

  protected RelSubset root;

  /**
   * Operands that apply to a given class of {@link RelNode}.
   *
   * 

Any operand can be an 'entry point' to a rule call, when a RelNode is * registered which matches the operand. This map allows us to narrow down * operands based on the class of the RelNode.

*/ private final Multimap, RelOptRuleOperand> classOperands = LinkedListMultimap.create(); /** * List of all sets. Used only for debugging. */ final List allSets = new ArrayList<>(); /** * Canonical map from {@link String digest} to the unique * {@link RelNode relational expression} with that digest. * *

Row type is part of the key for the rare occasion that similar * expressions have different types, e.g. variants of * {@code Project(child=rel#1, a=null)} where a is a null INTEGER or a * null VARCHAR(10).

*

Row type is represented as fieldTypes only, so {@code RelNode} that differ * with field names only are treated equal. * For instance, {@code Project(input=rel#1,empid=$0)} and {@code Project(input=rel#1,deptno=$0)} * are equal

*/ private final Map>, RelNode> mapDigestToRel = new HashMap<>(); /** * Map each registered expression ({@link RelNode}) to its equivalence set * ({@link RelSubset}). * *

We use an {@link IdentityHashMap} to simplify the process of merging * {@link RelSet} objects. Most {@link RelNode} objects are identified by * their digest, which involves the set that their child relational * expressions belong to. If those children belong to the same set, we have * to be careful, otherwise it gets incestuous.

*/ private final IdentityHashMap mapRel2Subset = new IdentityHashMap<>(); /** * The nodes to be pruned. * *

If a RelNode is pruned, all {@link RelOptRuleCall}s using it * are ignored, and future RelOptRuleCalls are not queued up. */ final Set prunedNodes = new HashSet<>(); /** * List of all schemas which have been registered. */ private final Set registeredSchemas = new HashSet<>(); /** * Holds rule calls waiting to be fired. */ final RuleQueue ruleQueue = new RuleQueue(this); /** * Holds the currently registered RelTraitDefs. */ private final List traitDefs = new ArrayList<>(); private int nextSetId = 0; private RelNode originalRoot; /** * Whether the planner can accept new rules. */ private boolean locked; /** * Whether rels with Convention.NONE has infinite cost. */ private boolean noneConventionHasInfiniteCost = true; private final List materializations = new ArrayList<>(); /** * Map of lattices by the qualified name of their star table. */ private final Map, RelOptLattice> latticeByName = new LinkedHashMap<>(); final Map provenanceMap; final Deque ruleCallStack = new ArrayDeque<>(); /** Zero cost, according to {@link #costFactory}. Not necessarily a * {@link com.hazelcast.org.apache.calcite.plan.volcano.VolcanoCost}. */ private final RelOptCost zeroCost; /** * Optimization tasks including trait propagation, enforcement. */ final Deque tasks = new ArrayDeque<>(); /** * The id generator for optimization tasks. */ int nextTaskId = 0; /** * Whether to enable top-down optimization or not. */ boolean topDownOpt = CalciteSystemProperty.TOPDOWN_OPT.value(); //~ Constructors ----------------------------------------------------------- /** * Creates a uninitialized VolcanoPlanner. To fully initialize * it, the caller must register the desired set of relations, rules, and * calling conventions. */ public VolcanoPlanner() { this(null, null); } /** * Creates a uninitialized VolcanoPlanner. To fully initialize * it, the caller must register the desired set of relations, rules, and * calling conventions. */ public VolcanoPlanner(Context externalContext) { this(null, externalContext); } /** * Creates a {@code VolcanoPlanner} with a given cost factory. */ public VolcanoPlanner(RelOptCostFactory costFactory, Context externalContext) { super(costFactory == null ? VolcanoCost.FACTORY : costFactory, externalContext); this.zeroCost = this.costFactory.makeZeroCost(); // If LOGGER is debug enabled, enable provenance information to be captured this.provenanceMap = LOGGER.isDebugEnabled() ? new HashMap<>() : Util.blackholeMap(); } //~ Methods ---------------------------------------------------------------- protected VolcanoPlannerPhaseRuleMappingInitializer getPhaseRuleMappingInitializer() { return phaseRuleMap -> { // Disable all phases except OPTIMIZE by adding one useless rule name. phaseRuleMap.get(VolcanoPlannerPhase.PRE_PROCESS_MDR).add("xxx"); phaseRuleMap.get(VolcanoPlannerPhase.PRE_PROCESS).add("xxx"); phaseRuleMap.get(VolcanoPlannerPhase.CLEANUP).add("xxx"); }; } /** * Enable or disable top-down optimization. * *

Note: Enabling top-down optimization will automatically disable * the use of AbstractConverter and related rules.

*/ public void setTopDownOpt(boolean value) { topDownOpt = value; } // implement RelOptPlanner public boolean isRegistered(RelNode rel) { return mapRel2Subset.get(rel) != null; } public void setRoot(RelNode rel) { // We've registered all the rules, and therefore RelNode classes, // we're interested in, and have not yet started calling metadata providers. // So now is a good time to tell the metadata layer what to expect. registerMetadataRels(); this.root = registerImpl(rel, null); if (this.originalRoot == null) { this.originalRoot = rel; } ensureRootConverters(); } public RelNode getRoot() { return root; } @Override public List getMaterializations() { return ImmutableList.copyOf(materializations); } @Override public void addMaterialization( RelOptMaterialization materialization) { materializations.add(materialization); } @Override public void addLattice(RelOptLattice lattice) { latticeByName.put(lattice.starRelOptTable.getQualifiedName(), lattice); } @Override public RelOptLattice getLattice(RelOptTable table) { return latticeByName.get(table.getQualifiedName()); } protected void registerMaterializations() { // Avoid using materializations while populating materializations! final CalciteConnectionConfig config = context.unwrap(CalciteConnectionConfig.class); if (config == null || !config.materializationsEnabled()) { return; } // Register rels using materialized views. final List>> materializationUses = RelOptMaterializations.useMaterializedViews(originalRoot, materializations); for (Pair> use : materializationUses) { RelNode rel = use.left; Hook.SUB.run(rel); registerImpl(rel, root.set); } // Register table rels of materialized views that cannot find a substitution // in root rel transformation but can potentially be useful. final Set applicableMaterializations = new HashSet<>( RelOptMaterializations.getApplicableMaterializations( originalRoot, materializations)); for (Pair> use : materializationUses) { applicableMaterializations.removeAll(use.right); } for (RelOptMaterialization materialization : applicableMaterializations) { RelSubset subset = registerImpl(materialization.queryRel, null); RelNode tableRel2 = RelOptUtil.createCastRel( materialization.tableRel, materialization.queryRel.getRowType(), true); registerImpl(tableRel2, subset.set); } // Register rels using lattices. final List> latticeUses = RelOptMaterializations.useLattices( originalRoot, ImmutableList.copyOf(latticeByName.values())); if (!latticeUses.isEmpty()) { RelNode rel = latticeUses.get(0).left; Hook.SUB.run(rel); registerImpl(rel, root.set); } } /** * Finds an expression's equivalence set. If the expression is not * registered, returns null. * * @param rel Relational expression * @return Equivalence set that expression belongs to, or null if it is not * registered */ public RelSet getSet(RelNode rel) { assert rel != null : "pre: rel != null"; final RelSubset subset = getSubset(rel); if (subset != null) { assert subset.set != null; return subset.set; } return null; } @Override public boolean addRelTraitDef(RelTraitDef relTraitDef) { return !traitDefs.contains(relTraitDef) && traitDefs.add(relTraitDef); } @Override public void clearRelTraitDefs() { traitDefs.clear(); } @Override public List getRelTraitDefs() { return traitDefs; } @Override public RelTraitSet emptyTraitSet() { RelTraitSet traitSet = super.emptyTraitSet(); for (RelTraitDef traitDef : traitDefs) { if (traitDef.multiple()) { // TODO: restructure RelTraitSet to allow a list of entries // for any given trait } traitSet = traitSet.plus(traitDef.getDefault()); } return traitSet; } @Override public void clear() { super.clear(); for (RelOptRule rule : getRules()) { removeRule(rule); } this.classOperands.clear(); this.allSets.clear(); this.mapDigestToRel.clear(); this.mapRel2Subset.clear(); this.prunedNodes.clear(); this.ruleQueue.clear(); this.materializations.clear(); this.latticeByName.clear(); this.provenanceMap.clear(); } public boolean addRule(RelOptRule rule) { if (locked) { return false; } if (!super.addRule(rule)) { return false; } // Each of this rule's operands is an 'entry point' for a rule call. // Register each operand against all concrete sub-classes that could match // it. for (RelOptRuleOperand operand : rule.getOperands()) { for (Class subClass : subClasses(operand.getMatchedClass())) { if (PhysicalNode.class.isAssignableFrom(subClass) && rule instanceof TransformationRule) { continue; } classOperands.put(subClass, operand); } } // If this is a converter rule, check that it operates on one of the // kinds of trait we are interested in, and if so, register the rule // with the trait. if (rule instanceof ConverterRule) { ConverterRule converterRule = (ConverterRule) rule; final RelTrait ruleTrait = converterRule.getInTrait(); final RelTraitDef ruleTraitDef = ruleTrait.getTraitDef(); if (traitDefs.contains(ruleTraitDef)) { ruleTraitDef.registerConverterRule(this, converterRule); } } return true; } public boolean removeRule(RelOptRule rule) { // Remove description. if (!super.removeRule(rule)) { // Rule was not present. return false; } // Remove operands. classOperands.values().removeIf(entry -> entry.getRule().equals(rule)); // Remove trait mappings. (In particular, entries from conversion // graph.) if (rule instanceof ConverterRule) { ConverterRule converterRule = (ConverterRule) rule; final RelTrait ruleTrait = converterRule.getInTrait(); final RelTraitDef ruleTraitDef = ruleTrait.getTraitDef(); if (traitDefs.contains(ruleTraitDef)) { ruleTraitDef.deregisterConverterRule(this, converterRule); } } return true; } @Override protected void onNewClass(RelNode node) { super.onNewClass(node); final boolean isPhysical = node instanceof PhysicalNode; // Create mappings so that instances of this class will match existing // operands. final Class clazz = node.getClass(); for (RelOptRule rule : mapDescToRule.values()) { if (isPhysical && rule instanceof TransformationRule) { continue; } for (RelOptRuleOperand operand : rule.getOperands()) { if (operand.getMatchedClass().isAssignableFrom(clazz)) { classOperands.put(clazz, operand); } } } } public RelNode changeTraits(final RelNode rel, RelTraitSet toTraits) { assert !rel.getTraitSet().equals(toTraits); assert toTraits.allSimple(); RelSubset rel2 = ensureRegistered(rel, null); if (rel2.getTraitSet().equals(toTraits)) { return rel2; } return rel2.set.getOrCreateSubset( rel.getCluster(), toTraits, true); } public RelOptPlanner chooseDelegate() { return this; } /** * Finds the most efficient expression to implement the query given via * {@link com.hazelcast.org.apache.calcite.plan.RelOptPlanner#setRoot(com.hazelcast.org.apache.calcite.rel.RelNode)}. * *

The algorithm executes repeatedly in a series of phases. In each phase * the exact rules that may be fired varies. The mapping of phases to rule * sets is maintained in the {@link #ruleQueue}. * *

In each phase, the planner then iterates over the rule matches presented * by the rule queue until the rule queue becomes empty. * * @return the most efficient RelNode tree found for implementing the given * query */ public RelNode findBestExp() { ensureRootConverters(); registerMaterializations(); PLANNING: for (VolcanoPlannerPhase phase : VolcanoPlannerPhase.values()) { while (true) { LOGGER.debug("PLANNER = {}; PHASE = {}; COST = {}", this, phase.toString(), root.bestCost); VolcanoRuleMatch match = ruleQueue.popMatch(phase); if (match == null) { break; } assert match.getRule().matches(match); try { match.onMatch(); } catch (VolcanoTimeoutException e) { root = canonize(root); ruleQueue.phaseCompleted(phase); break PLANNING; } // The root may have been merged with another // subset. Find the new root subset. root = canonize(root); } ruleQueue.phaseCompleted(phase); } if (topDownOpt) { tasks.push(OptimizeTask.create(root)); while (!tasks.isEmpty()) { OptimizeTask task = tasks.peek(); if (task.hasSubTask()) { tasks.push(task.nextSubTask()); continue; } task = tasks.pop(); task.execute(); } } if (LOGGER.isTraceEnabled()) { StringWriter sw = new StringWriter(); final PrintWriter pw = new PrintWriter(sw); dump(pw); pw.flush(); LOGGER.trace(sw.toString()); } dumpRuleAttemptsInfo(); RelNode cheapest = root.buildCheapestPlan(this); if (LOGGER.isDebugEnabled()) { LOGGER.debug( "Cheapest plan:\n{}", RelOptUtil.toString(cheapest, SqlExplainLevel.ALL_ATTRIBUTES)); if (!provenanceMap.isEmpty()) { LOGGER.debug("Provenance:\n{}", Dumpers.provenance(provenanceMap, cheapest)); } } return cheapest; } @Override public void checkCancel() { if (cancelFlag.get()) { throw new VolcanoTimeoutException(); } } /** Informs {@link JaninoRelMetadataProvider} about the different kinds of * {@link RelNode} that we will be dealing with. It will reduce the number * of times that we need to re-generate the provider. */ private void registerMetadataRels() { JaninoRelMetadataProvider.DEFAULT.register(classOperands.keySet()); } /** Ensures that the subset that is the root relational expression contains * converters to all other subsets in its equivalence set. * *

Thus the planner tries to find cheap implementations of those other * subsets, which can then be converted to the root. This is the only place * in the plan where explicit converters are required; elsewhere, a consumer * will be asking for the result in a particular convention, but the root has * no consumers. */ void ensureRootConverters() { final Set subsets = new HashSet<>(); for (RelNode rel : root.getRels()) { if (rel instanceof AbstractConverter) { subsets.add((RelSubset) ((AbstractConverter) rel).getInput()); } } for (RelSubset subset : root.set.subsets) { final ImmutableList difference = root.getTraitSet().difference(subset.getTraitSet()); if (difference.size() == 1 && subsets.add(subset)) { register( new AbstractConverter(subset.getCluster(), subset, difference.get(0).getTraitDef(), root.getTraitSet()), root); } } } public RelSubset register( RelNode rel, RelNode equivRel) { assert !isRegistered(rel) : "pre: isRegistered(rel)"; final RelSet set; if (equivRel == null) { set = null; } else { assert RelOptUtil.equal( "rel rowtype", rel.getRowType(), "equivRel rowtype", equivRel.getRowType(), Litmus.THROW); set = getSet(equivRel); } return registerImpl(rel, set); } public RelSubset ensureRegistered(RelNode rel, RelNode equivRel) { RelSubset result; final RelSubset subset = getSubset(rel); if (subset != null) { if (equivRel != null) { final RelSubset equivSubset = getSubset(equivRel); if (subset.set != equivSubset.set) { merge(equivSubset.set, subset.set); } } result = subset; } else { result = register(rel, equivRel); } // Checking if tree is valid considerably slows down planning // Only doing it if logger level is debug or finer if (LOGGER.isDebugEnabled()) { assert isValid(Litmus.THROW); } return result; } /** * Checks internal consistency. */ protected boolean isValid(Litmus litmus) { if (this.getRoot() == null) { return true; } RelMetadataQuery metaQuery = this.getRoot().getCluster().getMetadataQuerySupplier().get(); for (RelSet set : allSets) { if (set.equivalentSet != null) { return litmus.fail("set [{}] has been merged: it should not be in the list", set); } for (RelSubset subset : set.subsets) { if (subset.set != set) { return litmus.fail("subset [{}] is in wrong set [{}]", subset, set); } if (subset.best != null) { // Make sure best RelNode is valid if (!subset.set.rels.contains(subset.best)) { return litmus.fail("RelSubset [{}] does not contain its best RelNode [{}]", subset, subset.best); } // Make sure bestCost is up-to-date try { RelOptCost bestCost = getCost(subset.best, metaQuery); if (!subset.bestCost.equals(bestCost)) { return litmus.fail("RelSubset [" + subset + "] has wrong best cost " + subset.bestCost + ". Correct cost is " + bestCost); } } catch (CyclicMetadataException e) { // ignore } } for (RelNode rel : subset.getRels()) { try { RelOptCost relCost = getCost(rel, metaQuery); if (relCost.isLt(subset.bestCost)) { return litmus.fail("rel [{}] has lower cost {} than " + "best cost {} of subset [{}]", rel, relCost, subset.bestCost, subset); } } catch (CyclicMetadataException e) { // ignore } } } } return litmus.succeed(); } public void registerAbstractRelationalRules() { RelOptUtil.registerAbstractRelationalRules(this); } public void registerSchema(RelOptSchema schema) { if (registeredSchemas.add(schema)) { try { schema.registerRules(this); } catch (Exception e) { throw new AssertionError("While registering schema " + schema, e); } } } /** * Sets whether this planner should consider rel nodes with Convention.NONE * to have infinite cost or not. * @param infinite Whether to make none convention rel nodes infinite cost */ public void setNoneConventionHasInfiniteCost(boolean infinite) { this.noneConventionHasInfiniteCost = infinite; } public RelOptCost getCost(RelNode rel, RelMetadataQuery mq) { assert rel != null : "pre-condition: rel != null"; if (rel instanceof RelSubset) { return ((RelSubset) rel).bestCost; } if (noneConventionHasInfiniteCost && rel.getTraitSet().getTrait(ConventionTraitDef.INSTANCE) == Convention.NONE) { return costFactory.makeInfiniteCost(); } RelOptCost cost = mq.getNonCumulativeCost(rel); if (!zeroCost.isLt(cost)) { // cost must be positive, so nudge it cost = costFactory.makeTinyCost(); } for (RelNode input : rel.getInputs()) { cost = cost.plus(getCost(input, mq)); } return cost; } /** * Returns the subset that a relational expression belongs to. * * @param rel Relational expression * @return Subset it belongs to, or null if it is not registered */ public RelSubset getSubset(RelNode rel) { assert rel != null : "pre: rel != null"; if (rel instanceof RelSubset) { return (RelSubset) rel; } else { return mapRel2Subset.get(rel); } } public RelSubset getSubset( RelNode rel, RelTraitSet traits) { return getSubset(rel, traits, false); } public RelSubset getSubset( RelNode rel, RelTraitSet traits, boolean createIfMissing) { if ((rel instanceof RelSubset) && (rel.getTraitSet().equals(traits))) { return (RelSubset) rel; } RelSet set = getSet(rel); if (set == null) { return null; } if (createIfMissing) { return set.getOrCreateSubset(rel.getCluster(), traits); } return set.getSubset(traits); } boolean isSeedNode(RelNode node) { final RelSet set = getSubset(node).set; return set.seeds.contains(node); } RelNode changeTraitsUsingConverters( RelNode rel, RelTraitSet toTraits) { final RelTraitSet fromTraits = rel.getTraitSet(); assert fromTraits.size() >= toTraits.size(); final boolean allowInfiniteCostConverters = CalciteSystemProperty.ALLOW_INFINITE_COST_CONVERTERS.value(); // Traits may build on top of another...for example a collation trait // would typically come after a distribution trait since distribution // destroys collation; so when doing the conversion below we use // fromTraits as the trait of the just previously converted RelNode. // Also, toTraits may have fewer traits than fromTraits, excess traits // will be left as is. Finally, any null entries in toTraits are // ignored. RelNode converted = rel; for (int i = 0; (converted != null) && (i < toTraits.size()); i++) { RelTrait fromTrait = converted.getTraitSet().getTrait(i); final RelTraitDef traitDef = fromTrait.getTraitDef(); RelTrait toTrait = toTraits.getTrait(i); if (toTrait == null) { continue; } assert traitDef == toTrait.getTraitDef(); if (fromTrait.equals(toTrait)) { // No need to convert; it's already correct. continue; } rel = traitDef.convert( this, converted, toTrait, allowInfiniteCostConverters); if (rel != null) { assert rel.getTraitSet().getTrait(traitDef).satisfies(toTrait); register(rel, converted); } converted = rel; } // make sure final converted traitset subsumes what was required if (converted != null) { assert converted.getTraitSet().satisfies(toTraits); } return converted; } @Deprecated // to be removed before 1.24 public void setImportance(RelNode rel, double importance) { assert rel != null; if (importance == 0d) { prunedNodes.add(rel); } } @Override public void prune(RelNode rel) { prunedNodes.add(rel); } /** * Dumps the internal state of this VolcanoPlanner to a writer. * * @param pw Print writer * @see #normalizePlan(String) */ public void dump(PrintWriter pw) { pw.println("Root: " + root); pw.println("Original rel:"); if (originalRoot != null) { originalRoot.explain( new RelWriterImpl(pw, SqlExplainLevel.ALL_ATTRIBUTES, false)); } try { if (CalciteSystemProperty.DUMP_SETS.value()) { pw.println(); pw.println("Sets:"); Dumpers.dumpSets(this, pw); } if (CalciteSystemProperty.DUMP_GRAPHVIZ.value()) { pw.println(); pw.println("Graphviz:"); Dumpers.dumpGraphviz(this, pw); } } catch (Exception | AssertionError e) { pw.println("Error when dumping plan state: \n" + e); } } public String toDot() { StringWriter sw = new StringWriter(); PrintWriter pw = new PrintWriter(sw); Dumpers.dumpGraphviz(this, pw); pw.flush(); return sw.toString(); } /** * Re-computes the digest of a {@link RelNode}. * *

Since a relational expression's digest contains the identifiers of its * children, this method needs to be called when the child has been renamed, * for example if the child's set merges with another. * * @param rel Relational expression */ void rename(RelNode rel) { final String oldDigest = rel.getDigest(); if (fixUpInputs(rel)) { final Pair> oldKey = key(oldDigest, rel.getRowType()); final RelNode removed = mapDigestToRel.remove(oldKey); assert removed == rel; final String newDigest = rel.recomputeDigest(); LOGGER.trace("Rename #{} from '{}' to '{}'", rel.getId(), oldDigest, newDigest); final Pair> key = key(rel); final RelNode equivRel = mapDigestToRel.put(key, rel); if (equivRel != null) { assert equivRel != rel; // There's already an equivalent with the same name, and we // just knocked it out. Put it back, and forget about 'rel'. LOGGER.trace("After renaming rel#{} it is now equivalent to rel#{}", rel.getId(), equivRel.getId()); mapDigestToRel.put(key, equivRel); checkPruned(equivRel, rel); RelSubset equivRelSubset = getSubset(equivRel); // Remove back-links from children. for (RelNode input : rel.getInputs()) { ((RelSubset) input).set.parents.remove(rel); } // Remove rel from its subset. (This may leave the subset // empty, but if so, that will be dealt with when the sets // get merged.) final RelSubset subset = mapRel2Subset.put(rel, equivRelSubset); assert subset != null; boolean existed = subset.set.rels.remove(rel); assert existed : "rel was not known to its set"; final RelSubset equivSubset = getSubset(equivRel); for (RelSubset s : subset.set.subsets) { if (s.best == rel) { Set activeSet = new HashSet<>(); s.best = equivRel; // Propagate cost improvement since this potentially would change the subset's best cost s.propagateCostImprovements( this, equivRel.getCluster().getMetadataQuery(), equivRel, activeSet); } } if (equivSubset != subset) { // The equivalent relational expression is in a different // subset, therefore the sets are equivalent. assert equivSubset.getTraitSet().equals( subset.getTraitSet()); assert equivSubset.set != subset.set; merge(equivSubset.set, subset.set); } } } } /** * Registers a {@link RelNode}, which has already been registered, in a new * {@link RelSet}. * * @param set Set * @param rel Relational expression */ void reregister( RelSet set, RelNode rel) { // Is there an equivalent relational expression? (This might have // just occurred because the relational expression's child was just // found to be equivalent to another set.) final Pair> key = key(rel); RelNode equivRel = mapDigestToRel.get(key); if (equivRel != null && equivRel != rel) { assert equivRel.getClass() == rel.getClass(); assert equivRel.getTraitSet().equals(rel.getTraitSet()); checkPruned(equivRel, rel); return; } // Add the relational expression into the correct set and subset. if (!prunedNodes.contains(rel)) { addRelToSet(rel, set); } } /** * Prune rel node if the latter one (identical with rel node) * is already pruned. */ private void checkPruned(RelNode rel, RelNode duplicateRel) { if (prunedNodes.contains(duplicateRel)) { prunedNodes.add(rel); } } /** * If a subset has one or more equivalent subsets (owing to a set having * merged with another), returns the subset which is the leader of the * equivalence class. * * @param subset Subset * @return Leader of subset's equivalence class */ private RelSubset canonize(final RelSubset subset) { if (subset.set.equivalentSet == null) { return subset; } RelSet set = subset.set; do { set = set.equivalentSet; } while (set.equivalentSet != null); return set.getOrCreateSubset( subset.getCluster(), subset.getTraitSet()); } /** * Fires all rules matched by a relational expression. * * @param rel Relational expression which has just been created (or maybe * from the queue) */ void fireRules(RelNode rel) { for (RelOptRuleOperand operand : classOperands.get(rel.getClass())) { if (operand.matches(rel)) { final VolcanoRuleCall ruleCall; ruleCall = new DeferringRuleCall(this, operand); ruleCall.match(rel); } } } private boolean fixUpInputs(RelNode rel) { List inputs = rel.getInputs(); int i = -1; int changeCount = 0; for (RelNode input : inputs) { ++i; if (input instanceof RelSubset) { final RelSubset subset = (RelSubset) input; RelSubset newSubset = canonize(subset); if (newSubset != subset) { rel.replaceInput(i, newSubset); if (subset.set != newSubset.set) { subset.set.parents.remove(rel); newSubset.set.parents.add(rel); } changeCount++; } } } RelMdUtil.clearCache(rel); return changeCount > 0; } private RelSet merge(RelSet set, RelSet set2) { assert set != set2 : "pre: set != set2"; // Find the root of set2's equivalence tree. set = equivRoot(set); set2 = equivRoot(set2); // Looks like set2 was already marked as equivalent to set. Nothing // to do. if (set2 == set) { return set; } // If necessary, swap the sets, so we're always merging the newer set // into the older or merging parent set into child set. if (set2.getChildSets(this).contains(set)) { // No-op } else if (set.getChildSets(this).contains(set2) || set.id > set2.id) { RelSet t = set; set = set2; set2 = t; } // Merge. set.mergeWith(this, set2); // Was the set we merged with the root? If so, the result is the new // root. if (set2 == getSet(root)) { root = set.getOrCreateSubset( root.getCluster(), root.getTraitSet()); ensureRootConverters(); } return set; } static RelSet equivRoot(RelSet s) { RelSet p = s; // iterates at twice the rate, to detect cycles while (s.equivalentSet != null) { p = forward2(s, p); s = s.equivalentSet; } return s; } /** Moves forward two links, checking for a cycle at each. */ private static RelSet forward2(RelSet s, RelSet p) { p = forward1(s, p); p = forward1(s, p); return p; } /** Moves forward one link, checking for a cycle. */ private static RelSet forward1(RelSet s, RelSet p) { if (p != null) { p = p.equivalentSet; if (p == s) { throw new AssertionError("cycle in equivalence tree"); } } return p; } /** * Registers a new expression exp and queues up rule matches. * If set is not null, makes the expression part of that * equivalence set. If an identical expression is already registered, we * don't need to register this one and nor should we queue up rule matches. * * @param rel relational expression to register. Must be either a * {@link RelSubset}, or an unregistered {@link RelNode} * @param set set that rel belongs to, or null * @return the equivalence-set */ private RelSubset registerImpl( RelNode rel, RelSet set) { if (rel instanceof RelSubset) { return registerSubset(set, (RelSubset) rel); } assert !isRegistered(rel) : "already been registered: " + rel; if (rel.getCluster().getPlanner() != this) { throw new AssertionError("Relational expression " + rel + " belongs to a different planner than is currently being used."); } // Now is a good time to ensure that the relational expression // implements the interface required by its calling convention. final RelTraitSet traits = rel.getTraitSet(); final Convention convention = traits.getTrait(ConventionTraitDef.INSTANCE); assert convention != null; if (!convention.getInterface().isInstance(rel) && !(rel instanceof Converter)) { throw new AssertionError("Relational expression " + rel + " has calling-convention " + convention + " but does not implement the required interface '" + convention.getInterface() + "' of that convention"); } if (traits.size() != traitDefs.size()) { throw new AssertionError("Relational expression " + rel + " does not have the correct number of traits: " + traits.size() + " != " + traitDefs.size()); } // Ensure that its sub-expressions are registered. rel = rel.onRegister(this); // Record its provenance. (Rule call may be null.) if (ruleCallStack.isEmpty()) { provenanceMap.put(rel, Provenance.EMPTY); } else { final VolcanoRuleCall ruleCall = ruleCallStack.peek(); provenanceMap.put( rel, new RuleProvenance( ruleCall.rule, ImmutableList.copyOf(ruleCall.rels), ruleCall.id)); } // If it is equivalent to an existing expression, return the set that // the equivalent expression belongs to. Pair> key = key(rel); RelNode equivExp = mapDigestToRel.get(key); if (equivExp == null) { // do nothing } else if (equivExp == rel) { return getSubset(rel); } else { assert RelOptUtil.equal( "left", equivExp.getRowType(), "right", rel.getRowType(), Litmus.THROW); checkPruned(equivExp, rel); RelSet equivSet = getSet(equivExp); if (equivSet != null) { LOGGER.trace( "Register: rel#{} is equivalent to {}", rel.getId(), equivExp); return registerSubset(set, getSubset(equivExp)); } } // Converters are in the same set as their children. if (rel instanceof Converter) { final RelNode input = ((Converter) rel).getInput(); final RelSet childSet = getSet(input); if ((set != null) && (set != childSet) && (set.equivalentSet == null)) { LOGGER.trace( "Register #{} {} (and merge sets, because it is a conversion)", rel.getId(), rel.getDigest()); merge(set, childSet); // During the mergers, the child set may have changed, and since // we're not registered yet, we won't have been informed. So // check whether we are now equivalent to an existing // expression. if (fixUpInputs(rel)) { rel.recomputeDigest(); key = key(rel); RelNode equivRel = mapDigestToRel.get(key); if ((equivRel != rel) && (equivRel != null)) { // make sure this bad rel didn't get into the // set in any way (fixupInputs will do this but it // doesn't know if it should so it does it anyway) set.obliterateRelNode(rel); // There is already an equivalent expression. Use that // one, and forget about this one. return getSubset(equivRel); } } } else { set = childSet; } } // Place the expression in the appropriate equivalence set. if (set == null) { set = new RelSet( nextSetId++, Util.minus( RelOptUtil.getVariablesSet(rel), rel.getVariablesSet()), RelOptUtil.getVariablesUsed(rel)); this.allSets.add(set); } // Chain to find 'live' equivalent set, just in case several sets are // merging at the same time. while (set.equivalentSet != null) { set = set.equivalentSet; } // Allow each rel to register its own rules. registerClass(rel); final int subsetBeforeCount = set.subsets.size(); RelSubset subset = addRelToSet(rel, set); final RelNode xx = mapDigestToRel.put(key, rel); assert xx == null || xx == rel : rel.getDigest(); LOGGER.trace("Register {} in {}", rel, subset); // This relational expression may have been registered while we // recursively registered its children. If this is the case, we're done. if (xx != null) { return subset; } for (RelNode input : rel.getInputs()) { RelSubset childSubset = (RelSubset) input; childSubset.set.parents.add(rel); } // Queue up all rules triggered by this relexp's creation. fireRules(rel); // It's a new subset. if (set.subsets.size() > subsetBeforeCount || subset.triggerRule) { fireRules(subset); } return subset; } private RelSubset addRelToSet(RelNode rel, RelSet set) { RelSubset subset = set.add(rel); mapRel2Subset.put(rel, subset); // While a tree of RelNodes is being registered, sometimes nodes' costs // improve and the subset doesn't hear about it. You can end up with // a subset with a single rel of cost 99 which thinks its best cost is // 100. We think this happens because the back-links to parents are // not established. So, give the subset another chance to figure out // its cost. final RelMetadataQuery mq = rel.getCluster().getMetadataQuery(); try { subset.propagateCostImprovements(this, mq, rel, new HashSet<>()); } catch (CyclicMetadataException e) { // ignore } return subset; } private RelSubset registerSubset( RelSet set, RelSubset subset) { if ((set != subset.set) && (set != null) && (set.equivalentSet == null)) { LOGGER.trace("Register #{} {}, and merge sets", subset.getId(), subset); merge(set, subset.set); } return subset; } // implement RelOptPlanner public void registerMetadataProviders(List list) { list.add(0, new VolcanoRelMetadataProvider()); } // implement RelOptPlanner public long getRelMetadataTimestamp(RelNode rel) { RelSubset subset = getSubset(rel); if (subset == null) { return 0; } else { return subset.timestamp; } } /** * Normalizes references to subsets within the string representation of a * plan. * *

This is useful when writing tests: it helps to ensure that tests don't * break when an extra rule is introduced that generates a new subset and * causes subsequent subset numbers to be off by one. * *

For example, * *

* FennelAggRel.FENNEL_EXEC(child=Subset#17.FENNEL_EXEC,groupCount=1, * EXPR$1=COUNT())
*   FennelSortRel.FENNEL_EXEC(child=Subset#2.FENNEL_EXEC, * key=[0], discardDuplicates=false)
*     FennelCalcRel.FENNEL_EXEC( * child=Subset#4.FENNEL_EXEC, expr#0..8={inputs}, expr#9=3456, * DEPTNO=$t7, $f0=$t9)
*       MockTableImplRel.FENNEL_EXEC( * table=[CATALOG, SALES, EMP])
* *

becomes * *

* FennelAggRel.FENNEL_EXEC(child=Subset#{0}.FENNEL_EXEC, groupCount=1, * EXPR$1=COUNT())
*   FennelSortRel.FENNEL_EXEC(child=Subset#{1}.FENNEL_EXEC, * key=[0], discardDuplicates=false)
*     FennelCalcRel.FENNEL_EXEC( * child=Subset#{2}.FENNEL_EXEC,expr#0..8={inputs},expr#9=3456,DEPTNO=$t7, * $f0=$t9)
*       MockTableImplRel.FENNEL_EXEC( * table=[CATALOG, SALES, EMP])
* * @param plan Plan * @return Normalized plan */ public static String normalizePlan(String plan) { if (plan == null) { return null; } final Pattern poundDigits = Pattern.compile("Subset#[0-9]+\\."); int i = 0; while (true) { final Matcher matcher = poundDigits.matcher(plan); if (!matcher.find()) { return plan; } final String token = matcher.group(); // e.g. "Subset#23." plan = plan.replace(token, "Subset#{" + i++ + "}."); } } /** * Sets whether this planner is locked. A locked planner does not accept * new rules. {@link #addRule(com.hazelcast.org.apache.calcite.plan.RelOptRule)} will do * nothing and return false. * * @param locked Whether planner is locked */ public void setLocked(boolean locked) { this.locked = locked; } //~ Inner Classes ---------------------------------------------------------- /** * A rule call which defers its actions. Whereas {@link RelOptRuleCall} * invokes the rule when it finds a match, a DeferringRuleCall * creates a {@link VolcanoRuleMatch} which can be invoked later. */ private static class DeferringRuleCall extends VolcanoRuleCall { DeferringRuleCall( VolcanoPlanner planner, RelOptRuleOperand operand) { super(planner, operand); } /** * Rather than invoking the rule (as the base method does), creates a * {@link VolcanoRuleMatch} which can be invoked later. */ protected void onMatch() { final VolcanoRuleMatch match = new VolcanoRuleMatch( volcanoPlanner, getOperand0(), rels, nodeInputs); volcanoPlanner.ruleQueue.addMatch(match); } } /** * Where a RelNode came from. */ abstract static class Provenance { public static final Provenance EMPTY = new UnknownProvenance(); } /** * We do not know where this RelNode came from. Probably created by hand, * or by sql-to-rel converter. */ private static class UnknownProvenance extends Provenance { } /** * A RelNode that came directly from another RelNode via a copy. */ static class DirectProvenance extends Provenance { final RelNode source; DirectProvenance(RelNode source) { this.source = source; } } /** * A RelNode that came via the firing of a rule. */ static class RuleProvenance extends Provenance { final RelOptRule rule; final ImmutableList rels; final int callId; RuleProvenance(RelOptRule rule, ImmutableList rels, int callId) { this.rule = rule; this.rels = rels; this.callId = callId; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy