All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.hazelcast.org.apache.calcite.rel.metadata.RelMdUtil Maven / Gradle / Ivy

There is a newer version: 5.5.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.hazelcast.org.apache.calcite.rel.metadata;

import com.hazelcast.org.apache.calcite.plan.RelOptUtil;
import com.hazelcast.org.apache.calcite.rel.RelCollation;
import com.hazelcast.org.apache.calcite.rel.RelNode;
import com.hazelcast.org.apache.calcite.rel.core.Aggregate;
import com.hazelcast.org.apache.calcite.rel.core.AggregateCall;
import com.hazelcast.org.apache.calcite.rel.core.Join;
import com.hazelcast.org.apache.calcite.rel.core.JoinRelType;
import com.hazelcast.org.apache.calcite.rel.core.Minus;
import com.hazelcast.org.apache.calcite.rel.core.Project;
import com.hazelcast.org.apache.calcite.rel.core.Union;
import com.hazelcast.org.apache.calcite.rex.RexBuilder;
import com.hazelcast.org.apache.calcite.rex.RexCall;
import com.hazelcast.org.apache.calcite.rex.RexInputRef;
import com.hazelcast.org.apache.calcite.rex.RexLiteral;
import com.hazelcast.org.apache.calcite.rex.RexLocalRef;
import com.hazelcast.org.apache.calcite.rex.RexNode;
import com.hazelcast.org.apache.calcite.rex.RexProgram;
import com.hazelcast.org.apache.calcite.rex.RexUtil;
import com.hazelcast.org.apache.calcite.rex.RexVisitorImpl;
import com.hazelcast.org.apache.calcite.sql.SqlFunction;
import com.hazelcast.org.apache.calcite.sql.SqlFunctionCategory;
import com.hazelcast.org.apache.calcite.sql.SqlKind;
import com.hazelcast.org.apache.calcite.sql.fun.SqlStdOperatorTable;
import com.hazelcast.org.apache.calcite.sql.type.OperandTypes;
import com.hazelcast.org.apache.calcite.sql.type.ReturnTypes;
import com.hazelcast.org.apache.calcite.util.ImmutableBitSet;
import com.hazelcast.org.apache.calcite.util.NumberUtil;

import com.hazelcast.com.google.common.base.Preconditions;
import com.hazelcast.com.google.common.collect.ImmutableList;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Set;

/**
 * RelMdUtil provides utility methods used by the metadata provider methods.
 */
public class RelMdUtil {
  //~ Static fields/initializers ---------------------------------------------

  public static final SqlFunction ARTIFICIAL_SELECTIVITY_FUNC =
      new SqlFunction("ARTIFICIAL_SELECTIVITY",
          SqlKind.OTHER_FUNCTION,
          ReturnTypes.BOOLEAN, // returns boolean since we'll AND it
          null,
          OperandTypes.NUMERIC, // takes a numeric param
          SqlFunctionCategory.SYSTEM);

  //~ Methods ----------------------------------------------------------------

  private RelMdUtil() {
  }

  /**
   * Creates a RexNode that stores a selectivity value corresponding to the
   * selectivity of a semijoin. This can be added to a filter to simulate the
   * effect of the semijoin during costing, but should never appear in a real
   * plan since it has no physical implementation.
   *
   * @param rel the semijoin of interest
   * @return constructed rexnode
   */
  public static RexNode makeSemiJoinSelectivityRexNode(RelMetadataQuery mq, Join rel) {
    RexBuilder rexBuilder = rel.getCluster().getRexBuilder();
    double selectivity =
        computeSemiJoinSelectivity(mq, rel.getLeft(), rel.getRight(), rel);
    return rexBuilder.makeCall(ARTIFICIAL_SELECTIVITY_FUNC,
        rexBuilder.makeApproxLiteral(new BigDecimal(selectivity)));
  }

  /**
   * Returns the selectivity value stored in a call.
   *
   * @param artificialSelectivityFuncNode Call containing the selectivity value
   * @return selectivity value
   */
  public static double getSelectivityValue(
      RexNode artificialSelectivityFuncNode) {
    assert artificialSelectivityFuncNode instanceof RexCall;
    RexCall call = (RexCall) artificialSelectivityFuncNode;
    assert call.getOperator() == ARTIFICIAL_SELECTIVITY_FUNC;
    RexNode operand = call.getOperands().get(0);
    return ((RexLiteral) operand).getValueAs(Double.class);
  }

  /**
   * Computes the selectivity of a semijoin filter if it is applied on a fact
   * table. The computation is based on the selectivity of the dimension
   * table/columns and the number of distinct values in the fact table
   * columns.
   *
   * @param factRel fact table participating in the semijoin
   * @param dimRel  dimension table participating in the semijoin
   * @param rel     semijoin rel
   * @return calculated selectivity
   */
  public static double computeSemiJoinSelectivity(RelMetadataQuery mq,
      RelNode factRel, RelNode dimRel, Join rel) {
    return computeSemiJoinSelectivity(mq, factRel, dimRel, rel.analyzeCondition().leftKeys,
        rel.analyzeCondition().rightKeys);
  }

  /**
   * Computes the selectivity of a semijoin filter if it is applied on a fact
   * table. The computation is based on the selectivity of the dimension
   * table/columns and the number of distinct values in the fact table
   * columns.
   *
   * @param factRel     fact table participating in the semijoin
   * @param dimRel      dimension table participating in the semijoin
   * @param factKeyList LHS keys used in the filter
   * @param dimKeyList  RHS keys used in the filter
   * @return calculated selectivity
   */
  public static double computeSemiJoinSelectivity(RelMetadataQuery mq,
      RelNode factRel, RelNode dimRel, List factKeyList,
      List dimKeyList) {
    ImmutableBitSet.Builder factKeys = ImmutableBitSet.builder();
    for (int factCol : factKeyList) {
      factKeys.set(factCol);
    }
    ImmutableBitSet.Builder dimKeyBuilder = ImmutableBitSet.builder();
    for (int dimCol : dimKeyList) {
      dimKeyBuilder.set(dimCol);
    }
    final ImmutableBitSet dimKeys = dimKeyBuilder.build();

    Double factPop = mq.getPopulationSize(factRel, factKeys.build());
    if (factPop == null) {
      // use the dimension population if the fact population is
      // unavailable; since we're filtering the fact table, that's
      // the population we ideally want to use
      factPop = mq.getPopulationSize(dimRel, dimKeys);
    }

    // if cardinality and population are available, use them; otherwise
    // use percentage original rows
    Double selectivity;
    Double dimCard =
        mq.getDistinctRowCount(
            dimRel,
            dimKeys,
            null);
    if ((dimCard != null) && (factPop != null)) {
      // to avoid division by zero
      if (factPop < 1.0) {
        factPop = 1.0;
      }
      selectivity = dimCard / factPop;
    } else {
      selectivity = mq.getPercentageOriginalRows(dimRel);
    }

    if (selectivity == null) {
      // set a default selectivity based on the number of semijoin keys
      selectivity =
          Math.pow(
              0.1,
              dimKeys.cardinality());
    } else if (selectivity > 1.0) {
      selectivity = 1.0;
    }
    return selectivity;
  }

  /**
   * Returns true if the columns represented in a bit mask are definitely
   * known to form a unique column set.
   *
   * @param rel     the relational expression that the column mask corresponds
   *                to
   * @param colMask bit mask containing columns that will be tested for
   *                uniqueness
   * @return true if bit mask represents a unique column set; false if not (or
   * if no metadata is available)
   */
  public static boolean areColumnsDefinitelyUnique(RelMetadataQuery mq,
      RelNode rel, ImmutableBitSet colMask) {
    Boolean b = mq.areColumnsUnique(rel, colMask, false);
    return b != null && b;
  }

  public static Boolean areColumnsUnique(RelMetadataQuery mq, RelNode rel,
      List columnRefs) {
    ImmutableBitSet.Builder colMask = ImmutableBitSet.builder();
    for (RexInputRef columnRef : columnRefs) {
      colMask.set(columnRef.getIndex());
    }
    return mq.areColumnsUnique(rel, colMask.build());
  }

  public static boolean areColumnsDefinitelyUnique(RelMetadataQuery mq,
      RelNode rel, List columnRefs) {
    Boolean b = areColumnsUnique(mq, rel, columnRefs);
    return b != null && b;
  }

  /**
   * Returns true if the columns represented in a bit mask are definitely
   * known to form a unique column set, when nulls have been filtered from
   * the columns.
   *
   * @param rel     the relational expression that the column mask corresponds
   *                to
   * @param colMask bit mask containing columns that will be tested for
   *                uniqueness
   * @return true if bit mask represents a unique column set; false if not (or
   * if no metadata is available)
   */
  public static boolean areColumnsDefinitelyUniqueWhenNullsFiltered(
      RelMetadataQuery mq, RelNode rel, ImmutableBitSet colMask) {
    Boolean b = mq.areColumnsUnique(rel, colMask, true);
    if (b == null) {
      return false;
    }
    return b;
  }

  public static Boolean areColumnsUniqueWhenNullsFiltered(RelMetadataQuery mq,
      RelNode rel, List columnRefs) {
    ImmutableBitSet.Builder colMask = ImmutableBitSet.builder();

    for (RexInputRef columnRef : columnRefs) {
      colMask.set(columnRef.getIndex());
    }

    return mq.areColumnsUnique(rel, colMask.build(), true);
  }

  public static boolean areColumnsDefinitelyUniqueWhenNullsFiltered(
      RelMetadataQuery mq, RelNode rel, List columnRefs) {
    Boolean b = areColumnsUniqueWhenNullsFiltered(mq, rel, columnRefs);
    if (b == null) {
      return false;
    }
    return b;
  }

  /**
   * Separates a bit-mask representing a join into masks representing the left
   * and right inputs into the join.
   *
   * @param groupKey      original bit-mask
   * @param leftMask      left bit-mask to be set
   * @param rightMask     right bit-mask to be set
   * @param nFieldsOnLeft number of fields in the left input
   */
  public static void setLeftRightBitmaps(
      ImmutableBitSet groupKey,
      ImmutableBitSet.Builder leftMask,
      ImmutableBitSet.Builder rightMask,
      int nFieldsOnLeft) {
    for (int bit : groupKey) {
      if (bit < nFieldsOnLeft) {
        leftMask.set(bit);
      } else {
        rightMask.set(bit - nFieldsOnLeft);
      }
    }
  }

  /**
   * Returns the number of distinct values provided numSelected are selected
   * where there are domainSize distinct values.
   *
   * 

Note that in the case where domainSize == numSelected, it's not true * that the return value should be domainSize. If you pick 100 random values * between 1 and 100, you'll most likely end up with fewer than 100 distinct * values, because you'll pick some values more than once. * * @param domainSize number of distinct values in the domain * @param numSelected number selected from the domain * @return number of distinct values for subset selected */ public static Double numDistinctVals( Double domainSize, Double numSelected) { if ((domainSize == null) || (numSelected == null)) { return null; } // Cap the input sizes at MAX_VALUE to ensure that the calculations // using these values return meaningful values double dSize = capInfinity(domainSize); double numSel = capInfinity(numSelected); // The formula for this is: // 1. Assume we pick 80 random values between 1 and 100. // 2. The chance we skip any given value is .99 ^ 80 // 3. Thus on average we will skip .99 ^ 80 percent of the values // in the domain // 4. Generalized, we skip ( (n-1)/n ) ^ k values where n is the // number of possible values and k is the number we are selecting // 5. This can be rewritten via approximation (if you want to // know why approximation is called for here, ask Bill Keese): // ((n-1)/n) ^ k // = e ^ ln( ((n-1)/n) ^ k ) // = e ^ (k * ln ((n-1)/n)) // = e ^ (k * ln (1-1/n)) // ~= e ^ (k * (-1/n)) because ln(1+x) ~= x for small x // = e ^ (-k/n) // 6. Flipping it from number skipped to number visited, we get: double res = (dSize > 0) ? ((1.0 - Math.exp(-1 * numSel / dSize)) * dSize) : 0; // fix the boundary cases if (res > dSize) { res = dSize; } if (res > numSel) { res = numSel; } if (res < 0) { res = 0; } return res; } /** * Caps a double value at Double.MAX_VALUE if it's currently infinity * * @param d the Double object * @return the double value if it's not infinity; else Double.MAX_VALUE */ public static double capInfinity(Double d) { return d.isInfinite() ? Double.MAX_VALUE : d; } /** * Returns default estimates for selectivities, in the absence of stats. * * @param predicate predicate for which selectivity will be computed; null * means true, so gives selectity of 1.0 * @return estimated selectivity */ public static double guessSelectivity(RexNode predicate) { return guessSelectivity(predicate, false); } /** * Returns default estimates for selectivities, in the absence of stats. * * @param predicate predicate for which selectivity will be computed; * null means true, so gives selectity of 1.0 * @param artificialOnly return only the selectivity contribution from * artificial nodes * @return estimated selectivity */ public static double guessSelectivity( RexNode predicate, boolean artificialOnly) { double sel = 1.0; if ((predicate == null) || predicate.isAlwaysTrue()) { return sel; } double artificialSel = 1.0; for (RexNode pred : RelOptUtil.conjunctions(predicate)) { if (pred.getKind() == SqlKind.IS_NOT_NULL) { sel *= .9; } else if ( (pred instanceof RexCall) && (((RexCall) pred).getOperator() == RelMdUtil.ARTIFICIAL_SELECTIVITY_FUNC)) { artificialSel *= RelMdUtil.getSelectivityValue(pred); } else if (pred.isA(SqlKind.EQUALS)) { sel *= .15; } else if (pred.isA(SqlKind.COMPARISON)) { sel *= .5; } else { sel *= .25; } } if (artificialOnly) { return artificialSel; } else { return sel * artificialSel; } } /** * AND's two predicates together, either of which may be null, removing * redundant filters. * * @param rexBuilder rexBuilder used to construct AND'd RexNode * @param pred1 first predicate * @param pred2 second predicate * @return AND'd predicate or individual predicates if one is null */ public static RexNode unionPreds( RexBuilder rexBuilder, RexNode pred1, RexNode pred2) { final Set unionList = new LinkedHashSet<>(); unionList.addAll(RelOptUtil.conjunctions(pred1)); unionList.addAll(RelOptUtil.conjunctions(pred2)); return RexUtil.composeConjunction(rexBuilder, unionList, true); } /** * Takes the difference between two predicates, removing from the first any * predicates also in the second * * @param rexBuilder rexBuilder used to construct AND'd RexNode * @param pred1 first predicate * @param pred2 second predicate * @return MINUS'd predicate list */ public static RexNode minusPreds( RexBuilder rexBuilder, RexNode pred1, RexNode pred2) { final List minusList = new ArrayList<>(RelOptUtil.conjunctions(pred1)); minusList.removeAll(RelOptUtil.conjunctions(pred2)); return RexUtil.composeConjunction(rexBuilder, minusList, true); } /** * Takes a bitmap representing a set of input references and extracts the * ones that reference the group by columns in an aggregate. * * @param groupKey the original bitmap * @param aggRel the aggregate * @param childKey sets bits from groupKey corresponding to group by columns */ public static void setAggChildKeys( ImmutableBitSet groupKey, Aggregate aggRel, ImmutableBitSet.Builder childKey) { List aggCalls = aggRel.getAggCallList(); for (int bit : groupKey) { if (bit < aggRel.getGroupCount()) { // group by column childKey.set(bit); } else { // aggregate column -- set a bit for each argument being // aggregated AggregateCall agg = aggCalls.get(bit - aggRel.getGroupCount()); for (Integer arg : agg.getArgList()) { childKey.set(arg); } } } } /** * Forms two bitmaps by splitting the columns in a bitmap according to * whether or not the column references the child input or is an expression * @param projExprs Project expressions * @param groupKey Bitmap whose columns will be split * @param baseCols Bitmap representing columns from the child input * @param projCols Bitmap representing non-child columns */ public static void splitCols( List projExprs, ImmutableBitSet groupKey, ImmutableBitSet.Builder baseCols, ImmutableBitSet.Builder projCols) { for (int bit : groupKey) { final RexNode e = projExprs.get(bit); if (e instanceof RexInputRef) { baseCols.set(((RexInputRef) e).getIndex()); } else { projCols.set(bit); } } } /** * Computes the cardinality of a particular expression from the projection * list. * * @param rel RelNode corresponding to the project * @param expr projection expression * @return cardinality */ public static Double cardOfProjExpr(RelMetadataQuery mq, Project rel, RexNode expr) { return expr.accept(new CardOfProjExpr(mq, rel)); } /** * Computes the population size for a set of keys returned from a join * * @param joinRel the join rel * @param groupKey keys to compute the population for * @return computed population size */ public static Double getJoinPopulationSize(RelMetadataQuery mq, RelNode joinRel, ImmutableBitSet groupKey) { Join join = (Join) joinRel; if (!join.getJoinType().projectsRight()) { return mq.getPopulationSize(join.getLeft(), groupKey); } ImmutableBitSet.Builder leftMask = ImmutableBitSet.builder(); ImmutableBitSet.Builder rightMask = ImmutableBitSet.builder(); RelNode left = joinRel.getInputs().get(0); RelNode right = joinRel.getInputs().get(1); // separate the mask into masks for the left and right RelMdUtil.setLeftRightBitmaps( groupKey, leftMask, rightMask, left.getRowType().getFieldCount()); Double population = NumberUtil.multiply( mq.getPopulationSize(left, leftMask.build()), mq.getPopulationSize(right, rightMask.build())); return numDistinctVals(population, mq.getRowCount(joinRel)); } /** Add an epsilon to the value passed in. **/ public static double addEpsilon(double d) { assert d >= 0d; final double d0 = d; if (d < 10) { // For small d, adding 1 would change the value significantly. d *= 1.001d; if (d != d0) { return d; } } // For medium d, add 1. Keeps integral values integral. ++d; if (d != d0) { return d; } // For large d, adding 1 might not change the value. Add .1%. // If d is NaN, this still will probably not change the value. That's OK. d *= 1.001d; return d; } /** * Computes the number of distinct rows for a set of keys returned from a * semi-join * * @param semiJoinRel RelNode representing the semi-join * @param mq metadata query * @param groupKey keys that the distinct row count will be computed for * @param predicate join predicate * @return number of distinct rows */ public static Double getSemiJoinDistinctRowCount(Join semiJoinRel, RelMetadataQuery mq, ImmutableBitSet groupKey, RexNode predicate) { if (predicate == null || predicate.isAlwaysTrue()) { if (groupKey.isEmpty()) { return 1D; } } // create a RexNode representing the selectivity of the // semijoin filter and pass it to getDistinctRowCount RexNode newPred = RelMdUtil.makeSemiJoinSelectivityRexNode(mq, semiJoinRel); if (predicate != null) { RexBuilder rexBuilder = semiJoinRel.getCluster().getRexBuilder(); newPred = rexBuilder.makeCall( SqlStdOperatorTable.AND, newPred, predicate); } return mq.getDistinctRowCount(semiJoinRel.getLeft(), groupKey, newPred); } /** * Computes the number of distinct rows for a set of keys returned from a * join. Also known as NDV (number of distinct values). * * @param joinRel RelNode representing the join * @param joinType type of join * @param groupKey keys that the distinct row count will be computed for * @param predicate join predicate * @param useMaxNdv If true use formula max(left NDV, right NDV), * otherwise use left NDV * right NDV. * @return number of distinct rows */ public static Double getJoinDistinctRowCount(RelMetadataQuery mq, RelNode joinRel, JoinRelType joinType, ImmutableBitSet groupKey, RexNode predicate, boolean useMaxNdv) { if (predicate == null || predicate.isAlwaysTrue()) { if (groupKey.isEmpty()) { return 1D; } } Join join = (Join) joinRel; if (join.isSemiJoin()) { return getSemiJoinDistinctRowCount(join, mq, groupKey, predicate); } Double distRowCount; ImmutableBitSet.Builder leftMask = ImmutableBitSet.builder(); ImmutableBitSet.Builder rightMask = ImmutableBitSet.builder(); RelNode left = joinRel.getInputs().get(0); RelNode right = joinRel.getInputs().get(1); RelMdUtil.setLeftRightBitmaps( groupKey, leftMask, rightMask, left.getRowType().getFieldCount()); // determine which filters apply to the left vs right RexNode leftPred = null; RexNode rightPred = null; if (predicate != null) { final List leftFilters = new ArrayList<>(); final List rightFilters = new ArrayList<>(); final List joinFilters = new ArrayList<>(); final List predList = RelOptUtil.conjunctions(predicate); RelOptUtil.classifyFilters( joinRel, predList, joinType, !joinType.isOuterJoin(), !joinType.generatesNullsOnLeft(), !joinType.generatesNullsOnRight(), joinFilters, leftFilters, rightFilters); RexBuilder rexBuilder = joinRel.getCluster().getRexBuilder(); leftPred = RexUtil.composeConjunction(rexBuilder, leftFilters, true); rightPred = RexUtil.composeConjunction(rexBuilder, rightFilters, true); } if (useMaxNdv) { distRowCount = Math.max( mq.getDistinctRowCount(left, leftMask.build(), leftPred), mq.getDistinctRowCount(right, rightMask.build(), rightPred)); } else { distRowCount = NumberUtil.multiply( mq.getDistinctRowCount(left, leftMask.build(), leftPred), mq.getDistinctRowCount(right, rightMask.build(), rightPred)); } return RelMdUtil.numDistinctVals(distRowCount, mq.getRowCount(joinRel)); } /** Returns an estimate of the number of rows returned by a {@link Union} * (before duplicates are eliminated). */ public static double getUnionAllRowCount(RelMetadataQuery mq, Union rel) { double rowCount = 0; for (RelNode input : rel.getInputs()) { rowCount += mq.getRowCount(input); } return rowCount; } /** Returns an estimate of the number of rows returned by a {@link Minus}. */ public static double getMinusRowCount(RelMetadataQuery mq, Minus minus) { // REVIEW jvs 30-May-2005: I just pulled this out of a hat. final List inputs = minus.getInputs(); double dRows = mq.getRowCount(inputs.get(0)); for (int i = 1; i < inputs.size(); i++) { dRows -= 0.5 * mq.getRowCount(inputs.get(i)); } if (dRows < 0) { dRows = 0; } return dRows; } /** Returns an estimate of the number of rows returned by a {@link Join}. */ public static Double getJoinRowCount(RelMetadataQuery mq, Join join, RexNode condition) { if (!join.getJoinType().projectsRight()) { // Create a RexNode representing the selectivity of the // semijoin filter and pass it to getSelectivity RexNode semiJoinSelectivity = RelMdUtil.makeSemiJoinSelectivityRexNode(mq, join); return NumberUtil.multiply( mq.getSelectivity(join.getLeft(), semiJoinSelectivity), mq.getRowCount(join.getLeft())); } // Row count estimates of 0 will be rounded up to 1. // So, use maxRowCount where the product is very small. final Double left = mq.getRowCount(join.getLeft()); final Double right = mq.getRowCount(join.getRight()); if (left == null || right == null) { return null; } if (left <= 1D || right <= 1D) { Double max = mq.getMaxRowCount(join); if (max != null && max <= 1D) { return max; } } double product = left * right; return product * mq.getSelectivity(join, condition); } /** Returns an estimate of the number of rows returned by a semi-join. */ public static Double getSemiJoinRowCount(RelMetadataQuery mq, RelNode left, RelNode right, JoinRelType joinType, RexNode condition) { final Double leftCount = mq.getRowCount(left); if (leftCount == null) { return null; } return leftCount * RexUtil.getSelectivity(condition); } public static double estimateFilteredRows(RelNode child, RexProgram program, RelMetadataQuery mq) { // convert the program's RexLocalRef condition to an expanded RexNode RexLocalRef programCondition = program.getCondition(); RexNode condition; if (programCondition == null) { condition = null; } else { condition = program.expandLocalRef(programCondition); } return estimateFilteredRows(child, condition, mq); } public static double estimateFilteredRows(RelNode child, RexNode condition, RelMetadataQuery mq) { return mq.getRowCount(child) * mq.getSelectivity(child, condition); } /** Returns a point on a line. * *

The result is always a value between {@code minY} and {@code maxY}, * even if {@code x} is not between {@code minX} and {@code maxX}. * *

Examples:

    *
  • {@code linear(0, 0, 10, 100, 200}} returns 100 because 0 is minX *
  • {@code linear(5, 0, 10, 100, 200}} returns 150 because 5 is * mid-way between minX and maxX *
  • {@code linear(5, 0, 10, 100, 200}} returns 160 *
  • {@code linear(10, 0, 10, 100, 200}} returns 200 because 10 is maxX *
  • {@code linear(-2, 0, 10, 100, 200}} returns 100 because -2 is * less than minX and is therefore treated as minX *
  • {@code linear(12, 0, 10, 100, 200}} returns 100 because 12 is * greater than maxX and is therefore treated as maxX *
*/ public static double linear(int x, int minX, int maxX, double minY, double maxY) { Preconditions.checkArgument(minX < maxX); Preconditions.checkArgument(minY < maxY); if (x < minX) { return minY; } if (x > maxX) { return maxY; } return minY + (double) (x - minX) / (double) (maxX - minX) * (maxY - minY); } //~ Inner Classes ---------------------------------------------------------- /** Visitor that walks over a scalar expression and computes the * cardinality of its result. */ private static class CardOfProjExpr extends RexVisitorImpl { private final RelMetadataQuery mq; private Project rel; CardOfProjExpr(RelMetadataQuery mq, Project rel) { super(true); this.mq = mq; this.rel = rel; } public Double visitInputRef(RexInputRef var) { int index = var.getIndex(); ImmutableBitSet col = ImmutableBitSet.of(index); Double distinctRowCount = mq.getDistinctRowCount(rel.getInput(), col, null); if (distinctRowCount == null) { return null; } else { return numDistinctVals(distinctRowCount, mq.getRowCount(rel)); } } public Double visitLiteral(RexLiteral literal) { return numDistinctVals(1.0, mq.getRowCount(rel)); } public Double visitCall(RexCall call) { Double distinctRowCount; Double rowCount = mq.getRowCount(rel); if (call.isA(SqlKind.MINUS_PREFIX)) { distinctRowCount = cardOfProjExpr(mq, rel, call.getOperands().get(0)); } else if (call.isA(ImmutableList.of(SqlKind.PLUS, SqlKind.MINUS))) { Double card0 = cardOfProjExpr(mq, rel, call.getOperands().get(0)); if (card0 == null) { return null; } Double card1 = cardOfProjExpr(mq, rel, call.getOperands().get(1)); if (card1 == null) { return null; } distinctRowCount = Math.max(card0, card1); } else if (call.isA(ImmutableList.of(SqlKind.TIMES, SqlKind.DIVIDE))) { distinctRowCount = NumberUtil.multiply( cardOfProjExpr(mq, rel, call.getOperands().get(0)), cardOfProjExpr(mq, rel, call.getOperands().get(1))); // TODO zfong 6/21/06 - Broadbase has code to handle date // functions like year, month, day; E.g., cardinality of Month() // is 12 } else { if (call.getOperands().size() == 1) { distinctRowCount = cardOfProjExpr(mq, rel, call.getOperands().get(0)); } else { distinctRowCount = rowCount / 10; } } return numDistinctVals(distinctRowCount, rowCount); } } /** Returns whether a relational expression is already sorted and has fewer * rows than the sum of offset and limit. * *

If this is the case, it is safe to push down a * {@link com.hazelcast.org.apache.calcite.rel.core.Sort} with limit and optional offset. */ public static boolean checkInputForCollationAndLimit(RelMetadataQuery mq, RelNode input, RelCollation collation, RexNode offset, RexNode fetch) { // Check if the input is already sorted boolean alreadySorted = collation.getFieldCollations().isEmpty(); for (RelCollation inputCollation : mq.collations(input)) { if (inputCollation.satisfies(collation)) { alreadySorted = true; break; } } // Check if we are not reducing the number of tuples boolean alreadySmaller = true; final Double rowCount = mq.getMaxRowCount(input); if (rowCount != null && fetch != null) { final int offsetVal = offset == null ? 0 : RexLiteral.intValue(offset); final int limit = RexLiteral.intValue(fetch); if ((double) offsetVal + (double) limit < rowCount) { alreadySmaller = false; } } return alreadySorted && alreadySmaller; } /** * Validate the {@code result} represents a percentage number, * e.g. the value interval is [0.0, 1.0]. * * @return true if the {@code result} is a percentage number * @throws AssertionError if the validation fails */ public static Double validatePercentage(Double result) { assert isPercentage(result, true); return result; } private static boolean isPercentage(Double result, boolean fail) { if (result != null) { final double d = result; if (d < 0.0) { assert !fail; return false; } if (d > 1.0) { assert !fail; return false; } } return true; } /** * Validates the {@code result} is valid. * *

Never let the result go below 1, as it will result in incorrect * calculations if the row-count is used as the denominator in a * division expression. Also, cap the value at the max double value * to avoid calculations using infinity. * * @return the corrected value from the {@code result} * @throws AssertionError if the {@code result} is negative */ public static Double validateResult(Double result) { if (result == null) { return null; } if (result.isInfinite()) { result = Double.MAX_VALUE; } assert isNonNegative(result, true); if (result < 1.0) { result = 1.0; } return result; } private static boolean isNonNegative(Double result, boolean fail) { if (result != null) { final double d = result; if (d < 0.0) { assert !fail; return false; } } return true; } /** * Removes cached metadata values for specified RelNode. * * @param rel RelNode whose cached metadata should be removed * @return true if cache for the provided RelNode was not empty */ public static boolean clearCache(RelNode rel) { return rel.getCluster().getMetadataQuery().clearCache(rel); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy