com.hazelcast.org.antlr.v4.runtime.atn.ATNDeserializer Maven / Gradle / Ivy
/*
* Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
* Use of this file is governed by the BSD 3-clause license that
* can be found in the LICENSE.txt file in the project root.
*/
package com.hazelcast.org.antlr.v4.runtime.atn;
import com.hazelcast.org.antlr.v4.runtime.Token;
import com.hazelcast.org.antlr.v4.runtime.misc.IntervalSet;
import com.hazelcast.org.antlr.v4.runtime.misc.Pair;
import java.io.InvalidClassException;
import java.util.ArrayList;
import java.util.List;
import java.util.Locale;
import java.util.UUID;
/**
*
* @author Sam Harwell
*/
public class ATNDeserializer {
public static final int SERIALIZED_VERSION;
static {
/* This value should never change. Updates following this version are
* reflected as change in the unique ID SERIALIZED_UUID.
*/
SERIALIZED_VERSION = 3;
}
/**
* This is the earliest supported serialized UUID.
*/
private static final UUID BASE_SERIALIZED_UUID;
/**
* This UUID indicates an extension of {@link BASE_SERIALIZED_UUID} for the
* addition of precedence predicates.
*/
private static final UUID ADDED_PRECEDENCE_TRANSITIONS;
/**
* This UUID indicates an extension of {@link #ADDED_PRECEDENCE_TRANSITIONS}
* for the addition of lexer actions encoded as a sequence of
* {@link LexerAction} instances.
*/
private static final UUID ADDED_LEXER_ACTIONS;
/**
* This UUID indicates the serialized ATN contains two sets of
* IntervalSets, where the second set's values are encoded as
* 32-bit integers to support the full Unicode SMP range up to U+10FFFF.
*/
private static final UUID ADDED_UNICODE_SMP;
/**
* This list contains all of the currently supported UUIDs, ordered by when
* the feature first appeared in this branch.
*/
private static final List SUPPORTED_UUIDS;
/**
* This is the current serialized UUID.
*/
public static final UUID SERIALIZED_UUID;
static {
/* WARNING: DO NOT MERGE THESE LINES. If UUIDs differ during a merge,
* resolve the conflict by generating a new ID!
*/
BASE_SERIALIZED_UUID = UUID.fromString("33761B2D-78BB-4A43-8B0B-4F5BEE8AACF3");
ADDED_PRECEDENCE_TRANSITIONS = UUID.fromString("1DA0C57D-6C06-438A-9B27-10BCB3CE0F61");
ADDED_LEXER_ACTIONS = UUID.fromString("AADB8D7E-AEEF-4415-AD2B-8204D6CF042E");
ADDED_UNICODE_SMP = UUID.fromString("59627784-3BE5-417A-B9EB-8131A7286089");
SUPPORTED_UUIDS = new ArrayList();
SUPPORTED_UUIDS.add(BASE_SERIALIZED_UUID);
SUPPORTED_UUIDS.add(ADDED_PRECEDENCE_TRANSITIONS);
SUPPORTED_UUIDS.add(ADDED_LEXER_ACTIONS);
SUPPORTED_UUIDS.add(ADDED_UNICODE_SMP);
SERIALIZED_UUID = ADDED_UNICODE_SMP;
}
interface UnicodeDeserializer {
// Wrapper for readInt() or readInt32()
int readUnicode(char[] data, int p);
// Work around Java not allowing mutation of captured variables
// by returning amount by which to increment p after each read
int size();
}
enum UnicodeDeserializingMode {
UNICODE_BMP,
UNICODE_SMP
}
static UnicodeDeserializer getUnicodeDeserializer(UnicodeDeserializingMode mode) {
if (mode == UnicodeDeserializingMode.UNICODE_BMP) {
return new UnicodeDeserializer() {
@Override
public int readUnicode(char[] data, int p) {
return toInt(data[p]);
}
@Override
public int size() {
return 1;
}
};
}
else {
return new UnicodeDeserializer() {
@Override
public int readUnicode(char[] data, int p) {
return toInt32(data, p);
}
@Override
public int size() {
return 2;
}
};
}
}
private final ATNDeserializationOptions deserializationOptions;
public ATNDeserializer() {
this(ATNDeserializationOptions.getDefaultOptions());
}
public ATNDeserializer(ATNDeserializationOptions deserializationOptions) {
if (deserializationOptions == null) {
deserializationOptions = ATNDeserializationOptions.getDefaultOptions();
}
this.deserializationOptions = deserializationOptions;
}
/**
* Determines if a particular serialized representation of an ATN supports
* a particular feature, identified by the {@link UUID} used for serializing
* the ATN at the time the feature was first introduced.
*
* @param feature The {@link UUID} marking the first time the feature was
* supported in the serialized ATN.
* @param actualUuid The {@link UUID} of the actual serialized ATN which is
* currently being deserialized.
* @return {@code true} if the {@code actualUuid} value represents a
* serialized ATN at or after the feature identified by {@code feature} was
* introduced; otherwise, {@code false}.
*/
static protected boolean isFeatureSupported(UUID feature, UUID actualUuid) {
int featureIndex = SUPPORTED_UUIDS.indexOf(feature);
if (featureIndex < 0) {
return false;
}
return SUPPORTED_UUIDS.indexOf(actualUuid) >= featureIndex;
}
@SuppressWarnings("deprecation")
public ATN deserialize(char[] data) {
data = data.clone();
// Each char value in data is shifted by +2 at the entry to this method.
// This is an encoding optimization targeting the serialized values 0
// and -1 (serialized to 0xFFFF), each of which are very common in the
// serialized form of the ATN. In the modified UTF-8 that Java uses for
// compiled string literals, these two character values have multi-byte
// forms. By shifting each value by +2, they become characters 2 and 1
// prior to writing the string, each of which have single-byte
// representations. Since the shift occurs in the tool during ATN
// serialization, each target is responsible for adjusting the values
// during deserialization.
//
// As a special case, note that the first element of data is not
// adjusted because it contains the major version number of the
// serialized ATN, which was fixed at 3 at the time the value shifting
// was implemented.
for (int i = 1; i < data.length; i++) {
data[i] = (char)(data[i] - 2);
}
int p = 0;
int version = toInt(data[p++]);
if (version != SERIALIZED_VERSION) {
String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with version %d (expected %d).", version, SERIALIZED_VERSION);
throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
}
UUID uuid = toUUID(data, p);
p += 8;
if (!SUPPORTED_UUIDS.contains(uuid)) {
String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with UUID %s (expected %s or a legacy UUID).", uuid, SERIALIZED_UUID);
throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
}
boolean supportsPrecedencePredicates = isFeatureSupported(ADDED_PRECEDENCE_TRANSITIONS, uuid);
boolean supportsLexerActions = isFeatureSupported(ADDED_LEXER_ACTIONS, uuid);
ATNType grammarType = ATNType.values()[toInt(data[p++])];
int maxTokenType = toInt(data[p++]);
ATN atn = new ATN(grammarType, maxTokenType);
//
// STATES
//
List> loopBackStateNumbers = new ArrayList>();
List> endStateNumbers = new ArrayList>();
int nstates = toInt(data[p++]);
for (int i=0; i((LoopEndState)s, loopBackStateNumber));
}
else if (s instanceof BlockStartState) {
int endStateNumber = toInt(data[p++]);
endStateNumbers.add(new Pair((BlockStartState)s, endStateNumber));
}
atn.addState(s);
}
// delay the assignment of loop back and end states until we know all the state instances have been initialized
for (Pair pair : loopBackStateNumbers) {
pair.a.loopBackState = atn.states.get(pair.b);
}
for (Pair pair : endStateNumbers) {
pair.a.endState = (BlockEndState)atn.states.get(pair.b);
}
int numNonGreedyStates = toInt(data[p++]);
for (int i = 0; i < numNonGreedyStates; i++) {
int stateNumber = toInt(data[p++]);
((DecisionState)atn.states.get(stateNumber)).nonGreedy = true;
}
if (supportsPrecedencePredicates) {
int numPrecedenceStates = toInt(data[p++]);
for (int i = 0; i < numPrecedenceStates; i++) {
int stateNumber = toInt(data[p++]);
((RuleStartState)atn.states.get(stateNumber)).isLeftRecursiveRule = true;
}
}
//
// RULES
//
int nrules = toInt(data[p++]);
if ( atn.grammarType == ATNType.LEXER ) {
atn.ruleToTokenType = new int[nrules];
}
atn.ruleToStartState = new RuleStartState[nrules];
for (int i=0; i sets = new ArrayList();
// First, read all sets with 16-bit Unicode code points <= U+FFFF.
p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_BMP));
// Next, if the ATN was serialized with the Unicode SMP feature,
// deserialize sets with 32-bit arguments <= U+10FFFF.
if (isFeatureSupported(ADDED_UNICODE_SMP, uuid)) {
p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_SMP));
}
//
// EDGES
//
int nedges = toInt(data[p++]);
for (int i=0; i"+trg+
// " "+Transition.serializationNames[ttype]+
// " "+arg1+","+arg2+","+arg3);
ATNState srcState = atn.states.get(src);
srcState.addTransition(trans);
p += 6;
}
// edges for rule stop states can be derived, so they aren't serialized
for (ATNState state : atn.states) {
for (int i = 0; i < state.getNumberOfTransitions(); i++) {
Transition t = state.transition(i);
if (!(t instanceof RuleTransition)) {
continue;
}
RuleTransition ruleTransition = (RuleTransition)t;
int outermostPrecedenceReturn = -1;
if (atn.ruleToStartState[ruleTransition.target.ruleIndex].isLeftRecursiveRule) {
if (ruleTransition.precedence == 0) {
outermostPrecedenceReturn = ruleTransition.target.ruleIndex;
}
}
EpsilonTransition returnTransition = new EpsilonTransition(ruleTransition.followState, outermostPrecedenceReturn);
atn.ruleToStopState[ruleTransition.target.ruleIndex].addTransition(returnTransition);
}
}
for (ATNState state : atn.states) {
if (state instanceof BlockStartState) {
// we need to know the end state to set its start state
if (((BlockStartState)state).endState == null) {
throw new IllegalStateException();
}
// block end states can only be associated to a single block start state
if (((BlockStartState)state).endState.startState != null) {
throw new IllegalStateException();
}
((BlockStartState)state).endState.startState = (BlockStartState)state;
}
if (state instanceof PlusLoopbackState) {
PlusLoopbackState loopbackState = (PlusLoopbackState)state;
for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
ATNState target = loopbackState.transition(i).target;
if (target instanceof PlusBlockStartState) {
((PlusBlockStartState)target).loopBackState = loopbackState;
}
}
}
else if (state instanceof StarLoopbackState) {
StarLoopbackState loopbackState = (StarLoopbackState)state;
for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
ATNState target = loopbackState.transition(i).target;
if (target instanceof StarLoopEntryState) {
((StarLoopEntryState)target).loopBackState = loopbackState;
}
}
}
}
//
// DECISIONS
//
int ndecisions = toInt(data[p++]);
for (int i=1; i<=ndecisions; i++) {
int s = toInt(data[p++]);
DecisionState decState = (DecisionState)atn.states.get(s);
atn.decisionToState.add(decState);
decState.decision = i-1;
}
//
// LEXER ACTIONS
//
if (atn.grammarType == ATNType.LEXER) {
if (supportsLexerActions) {
atn.lexerActions = new LexerAction[toInt(data[p++])];
for (int i = 0; i < atn.lexerActions.length; i++) {
LexerActionType actionType = LexerActionType.values()[toInt(data[p++])];
int data1 = toInt(data[p++]);
if (data1 == 0xFFFF) {
data1 = -1;
}
int data2 = toInt(data[p++]);
if (data2 == 0xFFFF) {
data2 = -1;
}
LexerAction lexerAction = lexerActionFactory(actionType, data1, data2);
atn.lexerActions[i] = lexerAction;
}
}
else {
// for compatibility with older serialized ATNs, convert the old
// serialized action index for action transitions to the new
// form, which is the index of a LexerCustomAction
List legacyLexerActions = new ArrayList();
for (ATNState state : atn.states) {
for (int i = 0; i < state.getNumberOfTransitions(); i++) {
Transition transition = state.transition(i);
if (!(transition instanceof ActionTransition)) {
continue;
}
int ruleIndex = ((ActionTransition)transition).ruleIndex;
int actionIndex = ((ActionTransition)transition).actionIndex;
LexerCustomAction lexerAction = new LexerCustomAction(ruleIndex, actionIndex);
state.setTransition(i, new ActionTransition(transition.target, ruleIndex, legacyLexerActions.size(), false));
legacyLexerActions.add(lexerAction);
}
}
atn.lexerActions = legacyLexerActions.toArray(new LexerAction[legacyLexerActions.size()]);
}
}
markPrecedenceDecisions(atn);
if (deserializationOptions.isVerifyATN()) {
verifyATN(atn);
}
if (deserializationOptions.isGenerateRuleBypassTransitions() && atn.grammarType == ATNType.PARSER) {
atn.ruleToTokenType = new int[atn.ruleToStartState.length];
for (int i = 0; i < atn.ruleToStartState.length; i++) {
atn.ruleToTokenType[i] = atn.maxTokenType + i + 1;
}
for (int i = 0; i < atn.ruleToStartState.length; i++) {
BasicBlockStartState bypassStart = new BasicBlockStartState();
bypassStart.ruleIndex = i;
atn.addState(bypassStart);
BlockEndState bypassStop = new BlockEndState();
bypassStop.ruleIndex = i;
atn.addState(bypassStop);
bypassStart.endState = bypassStop;
atn.defineDecisionState(bypassStart);
bypassStop.startState = bypassStart;
ATNState endState;
Transition excludeTransition = null;
if (atn.ruleToStartState[i].isLeftRecursiveRule) {
// wrap from the beginning of the rule to the StarLoopEntryState
endState = null;
for (ATNState state : atn.states) {
if (state.ruleIndex != i) {
continue;
}
if (!(state instanceof StarLoopEntryState)) {
continue;
}
ATNState maybeLoopEndState = state.transition(state.getNumberOfTransitions() - 1).target;
if (!(maybeLoopEndState instanceof LoopEndState)) {
continue;
}
if (maybeLoopEndState.epsilonOnlyTransitions && maybeLoopEndState.transition(0).target instanceof RuleStopState) {
endState = state;
break;
}
}
if (endState == null) {
throw new UnsupportedOperationException("Couldn't identify final state of the precedence rule prefix section.");
}
excludeTransition = ((StarLoopEntryState)endState).loopBackState.transition(0);
}
else {
endState = atn.ruleToStopState[i];
}
// all non-excluded transitions that currently target end state need to target blockEnd instead
for (ATNState state : atn.states) {
for (Transition transition : state.transitions) {
if (transition == excludeTransition) {
continue;
}
if (transition.target == endState) {
transition.target = bypassStop;
}
}
}
// all transitions leaving the rule start state need to leave blockStart instead
while (atn.ruleToStartState[i].getNumberOfTransitions() > 0) {
Transition transition = atn.ruleToStartState[i].removeTransition(atn.ruleToStartState[i].getNumberOfTransitions() - 1);
bypassStart.addTransition(transition);
}
// link the new states
atn.ruleToStartState[i].addTransition(new EpsilonTransition(bypassStart));
bypassStop.addTransition(new EpsilonTransition(endState));
ATNState matchState = new BasicState();
atn.addState(matchState);
matchState.addTransition(new AtomTransition(bypassStop, atn.ruleToTokenType[i]));
bypassStart.addTransition(new EpsilonTransition(matchState));
}
if (deserializationOptions.isVerifyATN()) {
// reverify after modification
verifyATN(atn);
}
}
return atn;
}
private int deserializeSets(char[] data, int p, List sets, UnicodeDeserializer unicodeDeserializer) {
int nsets = toInt(data[p++]);
for (int i=0; i= 0);
}
else {
checkCondition(state.getNumberOfTransitions() <= 1 || state instanceof RuleStopState);
}
}
}
protected void checkCondition(boolean condition) {
checkCondition(condition, null);
}
protected void checkCondition(boolean condition, String message) {
if (!condition) {
throw new IllegalStateException(message);
}
}
protected static int toInt(char c) {
return c;
}
protected static int toInt32(char[] data, int offset) {
return (int)data[offset] | ((int)data[offset + 1] << 16);
}
protected static long toLong(char[] data, int offset) {
long lowOrder = toInt32(data, offset) & 0x00000000FFFFFFFFL;
return lowOrder | ((long)toInt32(data, offset + 2) << 32);
}
protected static UUID toUUID(char[] data, int offset) {
long leastSigBits = toLong(data, offset);
long mostSigBits = toLong(data, offset + 4);
return new UUID(mostSigBits, leastSigBits);
}
protected Transition edgeFactory(ATN atn,
int type, int src, int trg,
int arg1, int arg2, int arg3,
List sets)
{
ATNState target = atn.states.get(trg);
switch (type) {
case Transition.EPSILON : return new EpsilonTransition(target);
case Transition.RANGE :
if (arg3 != 0) {
return new RangeTransition(target, Token.EOF, arg2);
}
else {
return new RangeTransition(target, arg1, arg2);
}
case Transition.RULE :
RuleTransition rt = new RuleTransition((RuleStartState)atn.states.get(arg1), arg2, arg3, target);
return rt;
case Transition.PREDICATE :
PredicateTransition pt = new PredicateTransition(target, arg1, arg2, arg3 != 0);
return pt;
case Transition.PRECEDENCE:
return new PrecedencePredicateTransition(target, arg1);
case Transition.ATOM :
if (arg3 != 0) {
return new AtomTransition(target, Token.EOF);
}
else {
return new AtomTransition(target, arg1);
}
case Transition.ACTION :
ActionTransition a = new ActionTransition(target, arg1, arg2, arg3 != 0);
return a;
case Transition.SET : return new SetTransition(target, sets.get(arg1));
case Transition.NOT_SET : return new NotSetTransition(target, sets.get(arg1));
case Transition.WILDCARD : return new WildcardTransition(target);
}
throw new IllegalArgumentException("The specified transition type is not valid.");
}
protected ATNState stateFactory(int type, int ruleIndex) {
ATNState s;
switch (type) {
case ATNState.INVALID_TYPE: return null;
case ATNState.BASIC : s = new BasicState(); break;
case ATNState.RULE_START : s = new RuleStartState(); break;
case ATNState.BLOCK_START : s = new BasicBlockStartState(); break;
case ATNState.PLUS_BLOCK_START : s = new PlusBlockStartState(); break;
case ATNState.STAR_BLOCK_START : s = new StarBlockStartState(); break;
case ATNState.TOKEN_START : s = new TokensStartState(); break;
case ATNState.RULE_STOP : s = new RuleStopState(); break;
case ATNState.BLOCK_END : s = new BlockEndState(); break;
case ATNState.STAR_LOOP_BACK : s = new StarLoopbackState(); break;
case ATNState.STAR_LOOP_ENTRY : s = new StarLoopEntryState(); break;
case ATNState.PLUS_LOOP_BACK : s = new PlusLoopbackState(); break;
case ATNState.LOOP_END : s = new LoopEndState(); break;
default :
String message = String.format(Locale.getDefault(), "The specified state type %d is not valid.", type);
throw new IllegalArgumentException(message);
}
s.ruleIndex = ruleIndex;
return s;
}
protected LexerAction lexerActionFactory(LexerActionType type, int data1, int data2) {
switch (type) {
case CHANNEL:
return new LexerChannelAction(data1);
case CUSTOM:
return new LexerCustomAction(data1, data2);
case MODE:
return new LexerModeAction(data1);
case MORE:
return LexerMoreAction.INSTANCE;
case POP_MODE:
return LexerPopModeAction.INSTANCE;
case PUSH_MODE:
return new LexerPushModeAction(data1);
case SKIP:
return LexerSkipAction.INSTANCE;
case TYPE:
return new LexerTypeAction(data1);
default:
String message = String.format(Locale.getDefault(), "The specified lexer action type %d is not valid.", type);
throw new IllegalArgumentException(message);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy