com.hazelcast.org.apache.calcite.plan.volcano.TopDownRuleDriver Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to you under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.hazelcast.org.apache.calcite.plan.volcano;
import com.hazelcast.org.apache.calcite.plan.DeriveMode;
import com.hazelcast.org.apache.calcite.plan.RelOptCost;
import com.hazelcast.org.apache.calcite.plan.RelTraitSet;
import com.hazelcast.org.apache.calcite.rel.PhysicalNode;
import com.hazelcast.org.apache.calcite.rel.RelNode;
import com.hazelcast.org.apache.calcite.rel.convert.ConverterRule;
import com.hazelcast.org.apache.calcite.util.Pair;
import com.hazelcast.org.apache.calcite.util.trace.CalciteTrace;
import com.hazelcast.org.checkerframework.checker.nullness.qual.Nullable;
import com.hazelcast.org.slf4j.Logger;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.Stack;
import java.util.function.Predicate;
import static java.util.Objects.requireNonNull;
/**
* A rule driver that applies rules in a Top-Down manner.
* By ensuring rule applying orders, there could be ways for
* space pruning and rule mutual exclusivity check.
*
* This implementation uses tasks to manage rule matches.
* A Task is a piece of work to be executed, it may apply some rules
* or schedule other tasks.
*/
@SuppressWarnings("JdkObsolete")
class TopDownRuleDriver implements RuleDriver {
private static final Logger LOGGER = CalciteTrace.getPlannerTaskTracer();
private final VolcanoPlanner planner;
/**
* The rule queue designed for top-down rule applying.
*/
private final TopDownRuleQueue ruleQueue;
/**
* All tasks waiting for execution.
*/
private final Stack tasks = new Stack<>(); // TODO: replace with Deque
/**
* A task that is currently applying and may generate new RelNode.
* It provides a callback to schedule tasks for new RelNodes that
* are registered during task performing.
*/
private @Nullable GeneratorTask applying = null;
/**
* RelNodes that are generated by {@link com.hazelcast.org.apache.calcite.rel.PhysicalNode#passThrough}
* or {@link com.hazelcast.org.apache.calcite.rel.PhysicalNode#derive}. These nodes will not take part
* in another passThrough or derive.
*/
private final Set passThroughCache = new HashSet<>();
//~ Constructors -----------------------------------------------------------
TopDownRuleDriver(VolcanoPlanner planner) {
this.planner = planner;
ruleQueue = new TopDownRuleQueue(planner);
}
//~ Methods ----------------------------------------------------------------
@Override public void drive() {
TaskDescriptor description = new TaskDescriptor();
// Starting from the root's OptimizeGroup task.
tasks.push(
new OptimizeGroup(
requireNonNull(planner.root, "planner.root"),
planner.infCost));
// Ensure materialized view roots get explored.
// Note that implementation rules or enforcement rules are not applied
// unless the mv is matched.
exploreMaterializationRoots();
try {
// Iterates until the root is fully optimized.
while (!tasks.isEmpty()) {
Task task = tasks.pop();
description.log(task);
task.perform();
}
} catch (VolcanoTimeoutException ex) {
LOGGER.warn("Volcano planning times out, cancels the subsequent optimization.");
}
}
private void exploreMaterializationRoots() {
for (RelSubset extraRoot : planner.explorationRoots) {
RelSet rootSet = VolcanoPlanner.equivRoot(extraRoot.set);
RelSubset root = requireNonNull(planner.root, "planner.root");
if (rootSet == root.set) {
continue;
}
for (RelNode rel : extraRoot.set.rels) {
if (planner.isLogical(rel)) {
tasks.push(new OptimizeMExpr(rel, extraRoot, true));
}
}
}
}
@Override public TopDownRuleQueue getRuleQueue() {
return ruleQueue;
}
@Override public void clear() {
ruleQueue.clear();
tasks.clear();
passThroughCache.clear();
applying = null;
}
/** Procedure. */
private interface Procedure {
void exec();
}
private void applyGenerator(@Nullable GeneratorTask task, Procedure proc) {
GeneratorTask applying = this.applying;
this.applying = task;
try {
proc.exec();
} finally {
this.applying = applying;
}
}
@Override public void onSetMerged(RelSet set) {
// When RelSets get merged, an optimized group may get extra opportunities.
// Clear the OPTIMIZED state for the RelSubsets and all their ancestors,
// so that they will be optimized again.
applyGenerator(null, () -> clearProcessed(set));
}
private void clearProcessed(RelSet set) {
boolean explored = set.exploringState != null;
set.exploringState = null;
for (RelSubset subset : set.subsets) {
if (subset.resetTaskState() || explored) {
Collection parentRels = subset.getParentRels();
for (RelNode parentRel : parentRels) {
RelSet parentRelSet =
requireNonNull(planner.getSet(parentRel), () -> "no set found for " + parentRel);
clearProcessed(parentRelSet);
}
if (subset == planner.root) {
tasks.push(new OptimizeGroup(subset, planner.infCost));
}
}
}
}
// A callback invoked when a RelNode is going to be added into a RelSubset,
// either by Register or Reregister. The task driver should schedule tasks
// for the new nodes.
@Override public void onProduce(RelNode node, RelSubset subset) {
// If the RelNode is added to another RelSubset, just ignore it.
// It should be scheduled in the later OptimizeGroup task.
if (applying == null || subset.set
!= VolcanoPlanner.equivRoot(applying.group().set)) {
return;
}
// Extra callback from each task.
if (!requireNonNull(applying, "applying").onProduce(node)) {
return;
}
if (!planner.isLogical(node)) {
// For a physical node, schedule tasks to optimize its inputs.
// The upper bound depends on all optimizing RelSubsets that this RelNode belongs to.
// If there are optimizing subsets that come from the same RelSet,
// invoke the passThrough method to generate a candidate for that Subset.
RelSubset optimizingGroup = null;
boolean canPassThrough = node instanceof PhysicalNode
&& !passThroughCache.contains(node);
if (!canPassThrough && subset.taskState != null) {
optimizingGroup = subset;
} else {
RelOptCost upperBound = planner.zeroCost;
RelSet set = subset.getSet();
List subsetsToPassThrough = new ArrayList<>();
for (RelSubset otherSubset : set.subsets) {
if (!otherSubset.isRequired() || otherSubset != planner.root
&& otherSubset.taskState != RelSubset.OptimizeState.OPTIMIZING) {
continue;
}
if (node.getTraitSet().satisfies(otherSubset.getTraitSet())) {
if (upperBound.isLt(otherSubset.upperBound)) {
upperBound = otherSubset.upperBound;
optimizingGroup = otherSubset;
}
} else if (canPassThrough) {
subsetsToPassThrough.add(otherSubset);
}
}
for (RelSubset otherSubset : subsetsToPassThrough) {
Task task = getOptimizeInputTask(node, otherSubset);
if (task != null) {
tasks.push(task);
}
}
}
if (optimizingGroup == null) {
return;
}
Task task = getOptimizeInputTask(node, optimizingGroup);
if (task != null) {
tasks.push(task);
}
} else {
boolean optimizing = subset.set.subsets.stream()
.anyMatch(s -> s.taskState == RelSubset.OptimizeState.OPTIMIZING);
GeneratorTask applying = requireNonNull(this.applying, "this.applying");
tasks.push(
new OptimizeMExpr(node, applying.group(),
applying.exploring() && !optimizing));
}
}
//~ Inner Classes ----------------------------------------------------------
/**
* Base class for planner task.
*/
private interface Task {
void perform();
void describe(TaskDescriptor desc);
}
/**
* A class for task logging.
*/
private static class TaskDescriptor {
private boolean first = true;
private StringBuilder builder = new StringBuilder();
void log(Task task) {
if (!LOGGER.isDebugEnabled()) {
return;
}
first = true;
builder.setLength(0);
builder.append("Execute task: ").append(task.getClass().getSimpleName());
task.describe(this);
if (!first) {
builder.append(")");
}
LOGGER.debug(builder.toString());
}
TaskDescriptor item(String name, Object value) {
if (first) {
first = false;
builder.append("(");
} else {
builder.append(", ");
}
builder.append(name).append("=").append(value);
return this;
}
}
/** Task for generator. */
private interface GeneratorTask extends Task {
RelSubset group();
boolean exploring();
default boolean onProduce(RelNode node) {
return true;
}
}
/**
* Optimizes a RelSubset.
* It schedules optimization tasks for RelNodes in the RelSet.
*/
private class OptimizeGroup implements Task {
private final RelSubset group;
private RelOptCost upperBound;
OptimizeGroup(RelSubset group, RelOptCost upperBound) {
this.group = group;
this.upperBound = upperBound;
}
@Override public void perform() {
RelOptCost winner = group.getWinnerCost();
if (winner != null) {
return;
}
if (group.taskState != null && upperBound.isLe(group.upperBound)) {
// Either this group failed to optimize before or it is a ring.
return;
}
group.startOptimize(upperBound);
// Cannot decide an actual lower bound before MExpr are fully explored.
// So delay the lower bound check.
// A gate keeper to update context.
tasks.push(new GroupOptimized(group));
// Optimize mExprs in group.
List physicals = new ArrayList<>();
for (RelNode rel : group.set.rels) {
if (planner.isLogical(rel)) {
tasks.push(new OptimizeMExpr(rel, group, false));
} else if (rel.isEnforcer()) {
// Enforcers have lower priority than other physical nodes.
physicals.add(0, rel);
} else {
physicals.add(rel);
}
}
// Always apply O_INPUTS first so as to get a valid upper bound.
for (RelNode rel : physicals) {
Task task = getOptimizeInputTask(rel, group);
if (task != null) {
tasks.add(task);
}
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("group", group).item("upperBound", upperBound);
}
}
/**
* Marks the RelSubset optimized.
* When GroupOptimized returns, the group is either fully
* optimized and has a winner or failed to be optimized.
*/
private static class GroupOptimized implements Task {
private final RelSubset group;
GroupOptimized(RelSubset group) {
this.group = group;
}
@Override public void perform() {
group.setOptimized();
}
@Override public void describe(TaskDescriptor desc) {
desc.item("group", group)
.item("upperBound", group.upperBound);
}
}
/**
* Optimizes a logical node, including exploring its input and applying rules for it.
*/
private class OptimizeMExpr implements Task {
private final RelNode mExpr;
private final RelSubset group;
// When true, only apply transformation rules for mExpr.
private final boolean explore;
OptimizeMExpr(RelNode mExpr,
RelSubset group, boolean explore) {
this.mExpr = mExpr;
this.group = group;
this.explore = explore;
}
@Override public void perform() {
if (explore && group.isExplored()) {
return;
}
// 1. explore input.
// 2. apply other rules.
tasks.push(new ApplyRules(mExpr, group, explore));
for (int i = mExpr.getInputs().size() - 1; i >= 0; --i) {
tasks.push(new ExploreInput(mExpr, i));
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", mExpr).item("explore", explore);
}
}
/**
* Ensures that ExploreInputs are working on the correct input group.
* Currently, a RelNode's input may change since Calcite may merge RelSets.
*/
private class EnsureGroupExplored implements Task {
private final RelSubset input;
private final RelNode parent;
private final int inputOrdinal;
EnsureGroupExplored(RelSubset input, RelNode parent, int inputOrdinal) {
this.input = input;
this.parent = parent;
this.inputOrdinal = inputOrdinal;
}
@Override public void perform() {
if (parent.getInput(inputOrdinal) != input) {
tasks.push(new ExploreInput(parent, inputOrdinal));
return;
}
input.setExplored();
for (RelSubset subset : input.getSet().subsets) {
// Clear the LB cache as exploring state has changed.
input.getCluster().getMetadataQuery().clearCache(subset);
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", parent).item("i", inputOrdinal);
}
}
/**
* Explores an input for a RelNode.
*/
private class ExploreInput implements Task {
private final RelSubset group;
private final RelNode parent;
private final int inputOrdinal;
ExploreInput(RelNode parent, int inputOrdinal) {
this.group = (RelSubset) parent.getInput(inputOrdinal);
this.parent = parent;
this.inputOrdinal = inputOrdinal;
}
@Override public void perform() {
if (!group.explore()) {
return;
}
tasks.push(new EnsureGroupExplored(group, parent, inputOrdinal));
for (RelNode rel : group.set.rels) {
if (planner.isLogical(rel)) {
tasks.push(new OptimizeMExpr(rel, group, true));
}
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("group", group);
}
}
/**
* Extracts rule matches from rule queue and adds them to task stack.
*/
private class ApplyRules implements Task {
private final RelNode mExpr;
private final RelSubset group;
private final boolean exploring;
ApplyRules(RelNode mExpr, RelSubset group, boolean exploring) {
this.mExpr = mExpr;
this.group = group;
this.exploring = exploring;
}
@Override public void perform() {
Pair> category =
exploring ? Pair.of(mExpr, planner::isTransformationRule)
: Pair.of(mExpr, m -> true);
VolcanoRuleMatch match = ruleQueue.popMatch(category);
while (match != null) {
tasks.push(new ApplyRule(match, group, exploring));
match = ruleQueue.popMatch(category);
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", mExpr).item("exploring", exploring);
}
}
/**
* Applies a rule match.
*/
private class ApplyRule implements GeneratorTask {
private final VolcanoRuleMatch match;
private final RelSubset group;
private final boolean exploring;
ApplyRule(VolcanoRuleMatch match, RelSubset group, boolean exploring) {
this.match = match;
this.group = group;
this.exploring = exploring;
}
@Override public void describe(TaskDescriptor desc) {
desc.item("match", match).item("exploring", exploring);
}
@Override public void perform() {
applyGenerator(this, match::onMatch);
}
@Override public RelSubset group() {
return group;
}
@Override public boolean exploring() {
return exploring;
}
}
/**
* Decides how to optimize a physical node.
*/
private @Nullable Task getOptimizeInputTask(RelNode rel, RelSubset group) {
// If the physical does not in current optimizing RelSubset, it firstly tries to
// convert the physical node either by converter rule or traits pass though.
if (!rel.getTraitSet().satisfies(group.getTraitSet())) {
RelNode passThroughRel = convert(rel, group);
if (passThroughRel == null) {
LOGGER.debug("Skip optimizing because of traits: {}", rel);
return null;
}
final RelNode finalPassThroughRel = passThroughRel;
applyGenerator(null, () ->
planner.register(finalPassThroughRel, group));
rel = passThroughRel;
}
boolean unProcess = false;
for (RelNode input : rel.getInputs()) {
RelOptCost winner = ((RelSubset) input).getWinnerCost();
if (winner == null) {
unProcess = true;
break;
}
}
// If the inputs are all processed, only DeriveTrait is required.
if (!unProcess) {
return new DeriveTrait(rel, group);
}
// If part of the inputs are not optimized, schedule for the node an OptimizeInput task,
// which tried to optimize the inputs first and derive traits for further execution.
if (rel.getInputs().size() == 1) {
return new OptimizeInput1(rel, group);
}
return new OptimizeInputs(rel, group);
}
/**
* Tries to convert the physical node to another trait sets, either by converter rule
* or traits pass through.
*/
private @Nullable RelNode convert(RelNode rel, RelSubset group) {
if (!passThroughCache.contains(rel)) {
if (checkLowerBound(rel, group)) {
RelNode passThrough = group.passThrough(rel);
if (passThrough != null) {
assert passThrough.getConvention() == rel.getConvention();
passThroughCache.add(passThrough);
return passThrough;
}
} else {
LOGGER.debug("Skip pass though because of lower bound. LB = {}, UP = {}",
rel, group.upperBound);
}
}
VolcanoRuleMatch match = ruleQueue.popMatch(
Pair.of(rel,
m -> m.getRule() instanceof ConverterRule
&& ((ConverterRule) m.getRule()).getOutTrait().satisfies(
requireNonNull(group.getTraitSet().getConvention(),
() -> "convention for " + group))));
if (match != null) {
tasks.add(new ApplyRule(match, group, false));
}
return null;
}
/**
* Checks whether a node's lower bound is less than a RelSubset's upper bound.
*/
private boolean checkLowerBound(RelNode rel, RelSubset group) {
RelOptCost upperBound = group.upperBound;
if (upperBound.isInfinite()) {
return true;
}
RelOptCost lb = planner.getLowerBound(rel);
return !upperBound.isLe(lb);
}
/**
* A task that optimizes input for physical nodes who has only one input.
* This task can be replaced by OptimizeInputs but simplifies lots of logic.
*/
private class OptimizeInput1 implements Task {
private final RelNode mExpr;
private final RelSubset group;
OptimizeInput1(RelNode mExpr, RelSubset group) {
this.mExpr = mExpr;
this.group = group;
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", mExpr).item("upperBound", group.upperBound);
}
@Override public void perform() {
RelOptCost upperBound = group.upperBound;
RelOptCost upperForInput = planner.upperBoundForInputs(mExpr, upperBound);
if (upperForInput.isLe(planner.zeroCost)) {
LOGGER.debug(
"Skip O_INPUT because of lower bound. UB4Inputs = {}, UB = {}",
upperForInput, upperBound);
return;
}
RelSubset input = (RelSubset) mExpr.getInput(0);
// Apply enforcing rules.
tasks.push(new DeriveTrait(mExpr, group));
tasks.push(new CheckInput(null, mExpr, input, 0, upperForInput));
tasks.push(new OptimizeGroup(input, upperForInput));
}
}
/**
* Optimizes a physical node's inputs.
* This task calculates a proper upper bound for the input and invokes
* the OptimizeGroup task. Group pruning mainly happens here when
* the upper bound for an input is less than the input's lower bound
*/
private class OptimizeInputs implements Task {
private final RelNode mExpr;
private final RelSubset group;
private final int childCount;
private RelOptCost upperBound;
private RelOptCost upperForInput;
private int processingChild;
private @Nullable List lowerBounds;
private @Nullable RelOptCost lowerBoundSum;
OptimizeInputs(RelNode rel, RelSubset group) {
this.mExpr = rel;
this.group = group;
this.upperBound = group.upperBound;
this.upperForInput = planner.infCost;
this.childCount = rel.getInputs().size();
this.processingChild = 0;
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", mExpr).item("upperBound", upperBound)
.item("processingChild", processingChild);
}
@Override public void perform() {
RelOptCost bestCost = group.bestCost;
if (!bestCost.isInfinite()) {
// Calculate the upper bound for inputs.
if (bestCost.isLt(upperBound)) {
upperBound = bestCost;
upperForInput = planner.upperBoundForInputs(mExpr, upperBound);
}
if (lowerBoundSum == null) {
if (upperForInput.isInfinite()) {
upperForInput = planner.upperBoundForInputs(mExpr, upperBound);
}
List lowerBounds = this.lowerBounds = new ArrayList<>(childCount);
for (RelNode input : mExpr.getInputs()) {
RelOptCost lb = planner.getLowerBound(input);
lowerBounds.add(lb);
lowerBoundSum = lowerBoundSum == null ? lb : lowerBoundSum.plus(lb);
}
}
if (upperForInput.isLt(requireNonNull(lowerBoundSum, "lowerBoundSum"))) {
LOGGER.debug(
"Skip O_INPUT because of lower bound. LB = {}, UP = {}",
lowerBoundSum, upperForInput);
// Group is pruned.
return;
}
}
if (lowerBoundSum != null && lowerBoundSum.isInfinite()) {
LOGGER.debug("Skip O_INPUT as one of the inputs fail to optimize");
return;
}
if (processingChild == 0) {
// Derive traits after all inputs are optimized successfully.
tasks.push(new DeriveTrait(mExpr, group));
}
while (processingChild < childCount) {
RelSubset input =
(RelSubset) mExpr.getInput(processingChild);
RelOptCost winner = input.getWinnerCost();
if (winner != null) {
++ processingChild;
continue;
}
RelOptCost upper = upperForInput;
if (!upper.isInfinite()) {
// UB(one input)
// = UB(current subset) - Parent's NonCumulativeCost - LB(other inputs)
// = UB(current subset) - Parent's NonCumulativeCost - LB(all inputs) + LB(current input)
upper = upperForInput.minus(requireNonNull(lowerBoundSum, "lowerBoundSum"))
.plus(requireNonNull(lowerBounds, "lowerBounds").get(processingChild));
}
if (input.taskState != null && upper.isLe(input.upperBound)) {
LOGGER.debug("Failed to optimize because of upper bound. LB = {}, UP = {}",
lowerBoundSum, upperForInput);
return;
}
if (processingChild != childCount - 1) {
tasks.push(this);
}
tasks.push(new CheckInput(this, mExpr, input, processingChild, upper));
tasks.push(new OptimizeGroup(input, upper));
++ processingChild;
break;
}
}
}
/**
* Ensures input is optimized correctly and modify context.
*/
private class CheckInput implements Task {
private final @Nullable OptimizeInputs context;
private final RelOptCost upper;
private final RelNode parent;
private RelSubset input;
private final int i;
@Override public void describe(TaskDescriptor desc) {
desc.item("parent", parent).item("i", i);
}
CheckInput(@Nullable OptimizeInputs context,
RelNode parent, RelSubset input, int i, RelOptCost upper) {
this.context = context;
this.parent = parent;
this.input = input;
this.i = i;
this.upper = upper;
}
@Override public void perform() {
if (input != parent.getInput(i)) {
// The input has changed. So reschedule the optimize task.
input = (RelSubset) parent.getInput(i);
tasks.push(this);
tasks.push(new OptimizeGroup(input, upper));
return;
}
// Optimizing input completed. Update the context for other inputs.
if (context == null) {
// If there is no other input, just return (no need to optimize other inputs).
return;
}
RelOptCost winner = input.getWinnerCost();
if (winner == null) {
// The input fails to optimize due to group pruning.
// Then there's no need to optimize other inputs.
context.lowerBoundSum = planner.infCost;
return;
}
// Update the context.
RelOptCost lowerBoundSum = context.lowerBoundSum;
if (lowerBoundSum != null && lowerBoundSum != planner.infCost) {
List lowerBounds = requireNonNull(context.lowerBounds, "context.lowerBounds");
lowerBoundSum = lowerBoundSum.minus(lowerBounds.get(i));
lowerBoundSum = lowerBoundSum.plus(winner);
context.lowerBoundSum = lowerBoundSum;
lowerBounds.set(i, winner);
}
}
}
/**
* Derives traits for already optimized physical nodes.
*/
private class DeriveTrait implements GeneratorTask {
private final RelNode mExpr;
private final RelSubset group;
DeriveTrait(RelNode mExpr, RelSubset group) {
this.mExpr = mExpr;
this.group = group;
}
@Override public void perform() {
List inputs = mExpr.getInputs();
for (RelNode input : inputs) {
if (((RelSubset) input).getWinnerCost() == null) {
// Fail to optimize input, then no need to deliver traits.
return;
}
}
// In case some implementations use rules to convert between different physical conventions.
// Note that this is deprecated and will be removed in the future.
tasks.push(new ApplyRules(mExpr, group, false));
// Derive traits from inputs.
if (!passThroughCache.contains(mExpr)) {
applyGenerator(this, this::derive);
}
}
private void derive() {
if (!(mExpr instanceof PhysicalNode)
|| ((PhysicalNode) mExpr).getDeriveMode() == DeriveMode.PROHIBITED) {
return;
}
PhysicalNode rel = (PhysicalNode) mExpr;
DeriveMode mode = rel.getDeriveMode();
int arity = rel.getInputs().size();
// For OMAKASE.
List> inputTraits = new ArrayList<>(arity);
for (int i = 0; i < arity; i++) {
int childId = i;
if (mode == DeriveMode.RIGHT_FIRST) {
childId = arity - i - 1;
}
RelSubset input = (RelSubset) rel.getInput(childId);
List traits = new ArrayList<>();
inputTraits.add(traits);
final int numSubset = input.set.subsets.size();
for (int j = 0; j < numSubset; j++) {
RelSubset subset = input.set.subsets.get(j);
if (!subset.isDelivered() || subset.getTraitSet()
.equalsSansConvention(rel.getCluster().traitSet())) {
// Ideally we should stop deriving new relnodes when the
// subset's traitSet equals with input traitSet, but
// in case someone manually builds a physical relnode
// tree, which is highly discouraged, without specifying
// correct traitSet, e.g.
// EnumerableFilter [].ANY
// -> EnumerableMergeJoin [a].Hash[a]
// We should still be able to derive the correct traitSet
// for the dumb filter, even though the filter's traitSet
// should be derived from the MergeJoin when it is created.
// But if the subset's traitSet equals with the default
// empty traitSet sans convention (the default traitSet
// from cluster may have logical convention, NONE, which
// is not interesting), we are safe to ignore it, because
// a physical filter with non default traitSet, but has a
// input with default empty traitSet, e.g.
// EnumerableFilter [a].Hash[a]
// -> EnumerableProject [].ANY
// is definitely wrong, we should fail fast.
continue;
}
if (mode == DeriveMode.OMAKASE) {
traits.add(subset.getTraitSet());
} else {
RelNode newRel = rel.derive(subset.getTraitSet(), childId);
if (newRel != null && !planner.isRegistered(newRel)) {
RelNode newInput = newRel.getInput(childId);
assert newInput instanceof RelSubset;
if (newInput == subset) {
// If the child subset is used to derive new traits for
// current relnode, the subset will be marked REQUIRED
// when registering the new derived relnode and later
// will add enforcers between other delivered subsets.
// e.g. a MergeJoin request both inputs hash distributed
// by [a,b] sorted by [a,b]. If the left input R1 happens to
// be distributed by [a], the MergeJoin can derive new
// traits from this input and request both input to be
// distributed by [a] sorted by [a,b]. In case there is a
// alternative R2 with ANY distribution in the left input's
// RelSet, we may end up with requesting hash distribution
// [a] on alternative R2, which is unnecessary and waste,
// because we request distribution by [a] because of R1 can
// deliver the exact same distribution and we don't need to
// enforce properties on other subsets that can't satisfy
// the specific trait requirement.
// Here we add a constraint that {@code newInput == subset},
// because if the delivered child subset is HASH[a], but
// we require HASH[a].SORT[a,b], we still need to enable
// property enforcement on the required subset. Otherwise,
// we need to restrict enforcement between HASH[a].SORT[a,b]
// and HASH[a] only, which will make things a little bit
// complicated. We might optimize it in the future.
subset.disableEnforcing();
}
RelSubset relSubset = planner.register(newRel, rel);
assert relSubset.set == planner.getSubsetNonNull(rel).set;
}
}
}
if (mode == DeriveMode.LEFT_FIRST
|| mode == DeriveMode.RIGHT_FIRST) {
break;
}
}
if (mode == DeriveMode.OMAKASE) {
List relList = rel.derive(inputTraits);
for (RelNode relNode : relList) {
if (!planner.isRegistered(relNode)) {
planner.register(relNode, rel);
}
}
}
}
@Override public void describe(TaskDescriptor desc) {
desc.item("mExpr", mExpr).item("group", group);
}
@Override public RelSubset group() {
return group;
}
@Override public boolean exploring() {
return false;
}
@Override public boolean onProduce(RelNode node) {
passThroughCache.add(node);
return true;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy