All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.helger.matrix.EigenvalueDecomposition Maven / Gradle / Ivy

/*
 * Copyright (C) 2014-2024 Philip Helger (www.helger.com)
 * philip[at]helger[dot]com
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.helger.matrix;

import java.util.Arrays;

import javax.annotation.Nonnull;

import com.helger.commons.annotation.ReturnsMutableCopy;
import com.helger.commons.annotation.ReturnsMutableObject;
import com.helger.commons.equals.EqualsHelper;
import com.helger.commons.math.MathHelper;

import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;

/**
 * Eigenvalues and eigenvectors of a real matrix.
 * 

* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal * and the eigenvector matrix V is orthogonal. I.e. A = * V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the * identity matrix. *

* If A is not symmetric, then the eigenvalue matrix D is block diagonal with * the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + * i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent * the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals * V.times(D). The matrix V may be badly conditioned, or even singular, so the * validity of the equation A = V*D*inverse(V) depends upon V.cond(). **/ public class EigenvalueDecomposition { private static final double EPSILON = Math.pow (2.0, -52.0); /** * Row and column dimension (square matrix). * * @serial matrix dimension. */ private final int m_nDim; /** * Symmetry flag. * * @serial internal symmetry flag. */ private final boolean m_bIsSymmetric; /** * Arrays for internal storage of eigenvalues. * * @serial internal storage of eigenvalues. */ private final double [] m_aEVd; private final double [] m_aEVe; /** * Array for internal storage of eigenvectors. * * @serial internal storage of eigenvectors. */ private final double [] [] m_aEigenVector; /** * Array for internal storage of nonsymmetric Hessenberg form. * * @serial internal storage of nonsymmetric Hessenberg form. */ private double [] [] m_aHessenBerg; /** * Working storage for nonsymmetric algorithm. * * @serial working storage for nonsymmetric algorithm. */ private double [] m_aOrt; /** * Symmetric Householder reduction to tridiagonal form. */ private void _symmetricTred2 () { // This is derived from the Algol procedures tred2 by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int j = 0; j < m_nDim; j++) { m_aEVd[j] = m_aEigenVector[m_nDim - 1][j]; } // Householder reduction to tridiagonal form. for (int i = m_nDim - 1; i > 0; i--) { // Scale to avoid under/overflow. double scale = 0.0; double h = 0.0; for (int k = 0; k < i; k++) scale += MathHelper.abs (m_aEVd[k]); if (scale == 0.0) { m_aEVe[i] = m_aEVd[i - 1]; for (int j = 0; j < i; j++) { m_aEVd[j] = m_aEigenVector[i - 1][j]; m_aEigenVector[i][j] = 0.0; m_aEigenVector[j][i] = 0.0; } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { m_aEVd[k] /= scale; h += m_aEVd[k] * m_aEVd[k]; } double f = m_aEVd[i - 1]; double g = Math.sqrt (h); if (f > 0) { g = -g; } m_aEVe[i] = scale * g; h -= f * g; m_aEVd[i - 1] = f - g; for (int j = 0; j < i; j++) { m_aEVe[j] = 0.0; } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = m_aEVd[j]; m_aEigenVector[j][i] = f; g = m_aEVe[j] + m_aEigenVector[j][j] * f; for (int k = j + 1; k <= i - 1; k++) { g += m_aEigenVector[k][j] * m_aEVd[k]; m_aEVe[k] += m_aEigenVector[k][j] * f; } m_aEVe[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { m_aEVe[j] /= h; f += m_aEVe[j] * m_aEVd[j]; } final double hh = f / (h + h); for (int j = 0; j < i; j++) { m_aEVe[j] -= hh * m_aEVd[j]; } for (int j = 0; j < i; j++) { f = m_aEVd[j]; g = m_aEVe[j]; for (int k = j; k <= i - 1; k++) { m_aEigenVector[k][j] -= (f * m_aEVe[k] + g * m_aEVd[k]); } m_aEVd[j] = m_aEigenVector[i - 1][j]; m_aEigenVector[i][j] = 0.0; } } m_aEVd[i] = h; } // Accumulate transformations. for (int i = 0; i < m_nDim - 1; i++) { m_aEigenVector[m_nDim - 1][i] = m_aEigenVector[i][i]; m_aEigenVector[i][i] = 1.0; final double h = m_aEVd[i + 1]; if (h != 0.0) { for (int k = 0; k <= i; k++) { m_aEVd[k] = m_aEigenVector[k][i + 1] / h; } for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) { g += m_aEigenVector[k][i + 1] * m_aEigenVector[k][j]; } for (int k = 0; k <= i; k++) { m_aEigenVector[k][j] -= g * m_aEVd[k]; } } } for (int k = 0; k <= i; k++) { m_aEigenVector[k][i + 1] = 0.0; } } for (int j = 0; j < m_nDim; j++) { m_aEVd[j] = m_aEigenVector[m_nDim - 1][j]; m_aEigenVector[m_nDim - 1][j] = 0.0; } m_aEigenVector[m_nDim - 1][m_nDim - 1] = 1.0; m_aEVe[0] = 0.0; } /** * Symmetric tridiagonal QL algorithm. */ private void _symmetricTql2 () { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int i = 1; i < m_nDim; i++) m_aEVe[i - 1] = m_aEVe[i]; m_aEVe[m_nDim - 1] = 0.0; double f = 0.0; double tst1 = 0.0; for (int l = 0; l < m_nDim; l++) { // Find small subdiagonal element tst1 = Math.max (tst1, MathHelper.abs (m_aEVd[l]) + MathHelper.abs (m_aEVe[l])); int m = l; while (m < m_nDim) { if (MathHelper.abs (m_aEVe[m]) <= EPSILON * tst1) break; m++; } // If m == l, d[l] is an eigenvalue, // otherwise, iterate. if (m > l) { do { // Compute implicit shift double g = m_aEVd[l]; double p = (m_aEVd[l + 1] - g) / (2.0 * m_aEVe[l]); double r = MathHelper.hypot (p, 1.0); if (p < 0) { r = -r; } m_aEVd[l] = m_aEVe[l] / (p + r); m_aEVd[l + 1] = m_aEVe[l] * (p + r); final double dl1 = m_aEVd[l + 1]; double h = g - m_aEVd[l]; for (int i = l + 2; i < m_nDim; i++) { m_aEVd[i] -= h; } f += h; // Implicit QL transformation. p = m_aEVd[m]; double c = 1.0; double c2 = c; double c3 = c; final double el1 = m_aEVe[l + 1]; double s = 0.0; double s2 = 0.0; for (int i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * m_aEVe[i]; h = c * p; r = MathHelper.hypot (p, m_aEVe[i]); m_aEVe[i + 1] = s * r; s = m_aEVe[i] / r; c = p / r; p = c * m_aEVd[i] - s * g; m_aEVd[i + 1] = h + s * (c * g + s * m_aEVd[i]); // Accumulate transformation. for (int k = 0; k < m_nDim; k++) { h = m_aEigenVector[k][i + 1]; m_aEigenVector[k][i + 1] = s * m_aEigenVector[k][i] + c * h; m_aEigenVector[k][i] = c * m_aEigenVector[k][i] - s * h; } } p = -s * s2 * c3 * el1 * m_aEVe[l] / dl1; m_aEVe[l] = s * p; m_aEVd[l] = c * p; // Check for convergence. } while (MathHelper.abs (m_aEVe[l]) > EPSILON * tst1); } m_aEVd[l] = m_aEVd[l] + f; m_aEVe[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < m_nDim - 1; i++) { int k = i; double p = m_aEVd[i]; for (int j = i + 1; j < m_nDim; j++) { if (m_aEVd[j] < p) { k = j; p = m_aEVd[j]; } } if (k != i) { m_aEVd[k] = m_aEVd[i]; m_aEVd[i] = p; for (int j = 0; j < m_nDim; j++) { p = m_aEigenVector[j][i]; m_aEigenVector[j][i] = m_aEigenVector[j][k]; m_aEigenVector[j][k] = p; } } } } /** * Nonsymmetric reduction to Hessenberg form. */ private void _nonsymetricOrthes () { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. final int low = 0; final int high = m_nDim - 1; for (int m = low + 1; m <= high - 1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) scale += MathHelper.abs (m_aHessenBerg[i][m - 1]); if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { m_aOrt[i] = m_aHessenBerg[i][m - 1] / scale; h += m_aOrt[i] * m_aOrt[i]; } double g = Math.sqrt (h); if (m_aOrt[m] > 0) { g = -g; } h -= m_aOrt[m] * g; m_aOrt[m] = m_aOrt[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < m_nDim; j++) { double f = 0.0; for (int i = high; i >= m; i--) { f += m_aOrt[i] * m_aHessenBerg[i][j]; } f /= h; for (int i = m; i <= high; i++) { m_aHessenBerg[i][j] -= f * m_aOrt[i]; } } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) { f += m_aOrt[j] * m_aHessenBerg[i][j]; } f /= h; for (int j = m; j <= high; j++) { m_aHessenBerg[i][j] -= f * m_aOrt[j]; } } m_aOrt[m] = scale * m_aOrt[m]; m_aHessenBerg[m][m - 1] = scale * g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < m_nDim; i++) { final double [] aRow = m_aEigenVector[i]; for (int j = 0; j < m_nDim; j++) { aRow[j] = (i == j ? 1d : 0d); } } for (int m = high - 1; m >= low + 1; m--) { if (m_aHessenBerg[m][m - 1] != 0.0) { for (int i = m + 1; i <= high; i++) { m_aOrt[i] = m_aHessenBerg[i][m - 1]; } for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) { g += m_aOrt[i] * m_aEigenVector[i][j]; } // Double division avoids possible underflow g = (g / m_aOrt[m]) / m_aHessenBerg[m][m - 1]; for (int i = m; i <= high; i++) { m_aEigenVector[i][j] += g * m_aOrt[i]; } } } } } // Complex scalar division. private double m_dCdivr; private double m_dCdivi; private void _cdiv (final double xr, final double xi, final double yr, final double yi) { if (MathHelper.abs (yr) > MathHelper.abs (yi)) { final double r = yr == 0 ? 0 : yi / yr; final double d = yr + r * yi; if (d == 0) { m_dCdivr = 0; m_dCdivi = 0; } else { m_dCdivr = (xr + r * xi) / d; m_dCdivi = (xi - r * xr) / d; } } else { final double r = yi == 0 ? 0 : yr / yi; final double d = yi + r * yr; if (d == 0) { m_dCdivr = 0; m_dCdivi = 0; } else { m_dCdivr = (r * xr + xi) / d; m_dCdivi = (r * xi - xr) / d; } } } /** * Nonsymmetric reduction from Hessenberg to real Schur form. */ private void _nonsymetricHqr2 () { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize final int nn = m_nDim; int n = nn - 1; final int low = 0; final int high = nn - 1; double exshift = 0; double p = 0; double q = 0; double r = 0; double s = 0; double z = 0; double t; double w; double x; double y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low || i > high) { m_aEVd[i] = m_aHessenBerg[i][i]; m_aEVe[i] = 0.0; } for (int j = Math.max (i - 1, 0); j < nn; j++) { norm += MathHelper.abs (m_aHessenBerg[i][j]); } } // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = MathHelper.abs (m_aHessenBerg[l - 1][l - 1]) + MathHelper.abs (m_aHessenBerg[l][l]); if (s == 0.0) s = norm; if (MathHelper.abs (m_aHessenBerg[l][l - 1]) < EPSILON * s) break; l--; } // Check for convergence // One root found if (l == n) { m_aHessenBerg[n][n] = m_aHessenBerg[n][n] + exshift; m_aEVd[n] = m_aHessenBerg[n][n]; m_aEVe[n] = 0.0; n--; iter = 0; // Two roots found } else if (l == n - 1) { w = m_aHessenBerg[n][n - 1] * m_aHessenBerg[n - 1][n]; p = (m_aHessenBerg[n - 1][n - 1] - m_aHessenBerg[n][n]) / 2.0; q = p * p + w; z = Math.sqrt (MathHelper.abs (q)); m_aHessenBerg[n][n] = m_aHessenBerg[n][n] + exshift; m_aHessenBerg[n - 1][n - 1] = m_aHessenBerg[n - 1][n - 1] + exshift; x = m_aHessenBerg[n][n]; // Real pair if (q >= 0) { if (p >= 0) z = p + z; else z = p - z; m_aEVd[n - 1] = x + z; m_aEVd[n] = m_aEVd[n - 1]; if (z != 0.0) m_aEVd[n] = x - w / z; m_aEVe[n - 1] = 0.0; m_aEVe[n] = 0.0; x = m_aHessenBerg[n][n - 1]; s = MathHelper.abs (x) + MathHelper.abs (z); p = x / s; q = z / s; r = Math.sqrt (p * p + q * q); p /= r; q /= r; // Row modification for (int j = n - 1; j < nn; j++) { z = m_aHessenBerg[n - 1][j]; m_aHessenBerg[n - 1][j] = q * z + p * m_aHessenBerg[n][j]; m_aHessenBerg[n][j] = q * m_aHessenBerg[n][j] - p * z; } // Column modification for (int i = 0; i <= n; i++) { z = m_aHessenBerg[i][n - 1]; m_aHessenBerg[i][n - 1] = q * z + p * m_aHessenBerg[i][n]; m_aHessenBerg[i][n] = q * m_aHessenBerg[i][n] - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = m_aEigenVector[i][n - 1]; m_aEigenVector[i][n - 1] = q * z + p * m_aEigenVector[i][n]; m_aEigenVector[i][n] = q * m_aEigenVector[i][n] - p * z; } // Complex pair } else { m_aEVd[n - 1] = x + p; m_aEVd[n] = x + p; m_aEVe[n - 1] = z; m_aEVe[n] = -z; } n -= 2; iter = 0; // No convergence yet } else { // Form shift x = m_aHessenBerg[n][n]; y = 0.0; w = 0.0; if (l < n) { y = m_aHessenBerg[n - 1][n - 1]; w = m_aHessenBerg[n][n - 1] * m_aHessenBerg[n - 1][n]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) { m_aHessenBerg[i][i] -= x; } s = MathHelper.abs (m_aHessenBerg[n][n - 1]) + MathHelper.abs (m_aHessenBerg[n - 1][n - 2]); x = 0.75 * s; y = x; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = Math.sqrt (s); if (y < x) s = -s; s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) { m_aHessenBerg[i][i] -= s; } exshift += s; x = 0.964; y = x; w = x; } } iter++; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n - 2; while (m >= l) { z = m_aHessenBerg[m][m]; r = x - z; s = y - z; p = (r * s - w) / m_aHessenBerg[m + 1][m] + m_aHessenBerg[m][m + 1]; q = m_aHessenBerg[m + 1][m + 1] - z - r - s; r = m_aHessenBerg[m + 2][m + 1]; s = MathHelper.abs (p) + MathHelper.abs (q) + MathHelper.abs (r); p /= s; q /= s; r /= s; if (m == l) break; if (MathHelper.abs (m_aHessenBerg[m][m - 1]) * (MathHelper.abs (q) + MathHelper.abs (r)) < EPSILON * (MathHelper.abs (p) * (MathHelper.abs (m_aHessenBerg[m - 1][m - 1]) + MathHelper.abs (z) + MathHelper.abs (m_aHessenBerg[m + 1][m + 1])))) { break; } m--; } for (int i = m + 2; i <= n; i++) { m_aHessenBerg[i][i - 2] = 0.0; if (i > m + 2) { m_aHessenBerg[i][i - 3] = 0.0; } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n - 1; k++) { final boolean notlast = (k != n - 1); if (k != m) { p = m_aHessenBerg[k][k - 1]; q = m_aHessenBerg[k + 1][k - 1]; r = (notlast ? m_aHessenBerg[k + 2][k - 1] : 0.0); x = MathHelper.abs (p) + MathHelper.abs (q) + MathHelper.abs (r); if (x == 0.0) { continue; } p /= x; q /= x; r /= x; } s = Math.sqrt (p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { m_aHessenBerg[k][k - 1] = -s * x; } else if (l != m) { m_aHessenBerg[k][k - 1] = -m_aHessenBerg[k][k - 1]; } p += s; x = p / s; y = q / s; z = r / s; q /= p; r /= p; // Row modification for (int j = k; j < nn; j++) { p = m_aHessenBerg[k][j] + q * m_aHessenBerg[k + 1][j]; if (notlast) { p += r * m_aHessenBerg[k + 2][j]; m_aHessenBerg[k + 2][j] = m_aHessenBerg[k + 2][j] - p * z; } m_aHessenBerg[k][j] = m_aHessenBerg[k][j] - p * x; m_aHessenBerg[k + 1][j] = m_aHessenBerg[k + 1][j] - p * y; } // Column modification for (int i = 0; i <= Math.min (n, k + 3); i++) { p = x * m_aHessenBerg[i][k] + y * m_aHessenBerg[i][k + 1]; if (notlast) { p += z * m_aHessenBerg[i][k + 2]; m_aHessenBerg[i][k + 2] = m_aHessenBerg[i][k + 2] - p * r; } m_aHessenBerg[i][k] = m_aHessenBerg[i][k] - p; m_aHessenBerg[i][k + 1] = m_aHessenBerg[i][k + 1] - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * m_aEigenVector[i][k] + y * m_aEigenVector[i][k + 1]; if (notlast) { p += z * m_aEigenVector[i][k + 2]; m_aEigenVector[i][k + 2] = m_aEigenVector[i][k + 2] - p * r; } m_aEigenVector[i][k] = m_aEigenVector[i][k] - p; m_aEigenVector[i][k + 1] = m_aEigenVector[i][k + 1] - p * q; } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn - 1; n >= 0; n--) { p = m_aEVd[n]; q = m_aEVe[n]; // Real vector if (q == 0) { int l = n; m_aHessenBerg[n][n] = 1.0; for (int i = n - 1; i >= 0; i--) { w = m_aHessenBerg[i][i] - p; r = 0.0; for (int j = l; j <= n; j++) { r += m_aHessenBerg[i][j] * m_aHessenBerg[j][n]; } if (m_aEVe[i] < 0.0) { z = w; s = r; } else { l = i; if (m_aEVe[i] == 0.0) { if (w != 0.0) { m_aHessenBerg[i][n] = -r / w; } else { m_aHessenBerg[i][n] = -r / (EPSILON * norm); } // Solve real equations } else { x = m_aHessenBerg[i][i + 1]; y = m_aHessenBerg[i + 1][i]; q = (m_aEVd[i] - p) * (m_aEVd[i] - p) + m_aEVe[i] * m_aEVe[i]; t = (x * s - z * r) / q; m_aHessenBerg[i][n] = t; if (MathHelper.abs (x) > MathHelper.abs (z)) { m_aHessenBerg[i + 1][n] = (-r - w * t) / x; } else { m_aHessenBerg[i + 1][n] = (-s - y * t) / z; } } // Overflow control t = MathHelper.abs (m_aHessenBerg[i][n]); if ((EPSILON * t) * t > 1) { for (int j = i; j <= n; j++) { m_aHessenBerg[j][n] = m_aHessenBerg[j][n] / t; } } } } // Complex vector } else if (q < 0) { int l = n - 1; // Last vector component imaginary so matrix is triangular if (MathHelper.abs (m_aHessenBerg[n][n - 1]) > MathHelper.abs (m_aHessenBerg[n - 1][n])) { m_aHessenBerg[n - 1][n - 1] = q / m_aHessenBerg[n][n - 1]; m_aHessenBerg[n - 1][n] = -(m_aHessenBerg[n][n] - p) / m_aHessenBerg[n][n - 1]; } else { _cdiv (0.0, -m_aHessenBerg[n - 1][n], m_aHessenBerg[n - 1][n - 1] - p, q); m_aHessenBerg[n - 1][n - 1] = m_dCdivr; m_aHessenBerg[n - 1][n] = m_dCdivi; } m_aHessenBerg[n][n - 1] = 0.0; m_aHessenBerg[n][n] = 1.0; for (int i = n - 2; i >= 0; i--) { double ra = 0.0; double sa = 0.0; double vr; double vi; for (int j = l; j <= n; j++) { ra += m_aHessenBerg[i][j] * m_aHessenBerg[j][n - 1]; sa += m_aHessenBerg[i][j] * m_aHessenBerg[j][n]; } w = m_aHessenBerg[i][i] - p; if (m_aEVe[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (m_aEVe[i] == 0) { _cdiv (-ra, -sa, w, q); m_aHessenBerg[i][n - 1] = m_dCdivr; m_aHessenBerg[i][n] = m_dCdivi; } else { // Solve complex equations x = m_aHessenBerg[i][i + 1]; y = m_aHessenBerg[i + 1][i]; vr = (m_aEVd[i] - p) * (m_aEVd[i] - p) + m_aEVe[i] * m_aEVe[i] - q * q; vi = (m_aEVd[i] - p) * 2.0 * q; if (vr == 0.0 && vi == 0.0) { vr = EPSILON * norm * (MathHelper.abs (w) + MathHelper.abs (q) + MathHelper.abs (x) + MathHelper.abs (y) + MathHelper.abs (z)); } _cdiv (x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); m_aHessenBerg[i][n - 1] = m_dCdivr; m_aHessenBerg[i][n] = m_dCdivi; if (MathHelper.abs (x) > (MathHelper.abs (z) + MathHelper.abs (q))) { m_aHessenBerg[i + 1][n - 1] = (-ra - w * m_aHessenBerg[i][n - 1] + q * m_aHessenBerg[i][n]) / x; m_aHessenBerg[i + 1][n] = (-sa - w * m_aHessenBerg[i][n] - q * m_aHessenBerg[i][n - 1]) / x; } else { _cdiv (-r - y * m_aHessenBerg[i][n - 1], -s - y * m_aHessenBerg[i][n], z, q); m_aHessenBerg[i + 1][n - 1] = m_dCdivr; m_aHessenBerg[i + 1][n] = m_dCdivi; } } // Overflow control t = Math.max (MathHelper.abs (m_aHessenBerg[i][n - 1]), MathHelper.abs (m_aHessenBerg[i][n])); if ((EPSILON * t) * t > 1) { for (int j = i; j <= n; j++) { m_aHessenBerg[j][n - 1] = m_aHessenBerg[j][n - 1] / t; m_aHessenBerg[j][n] = m_aHessenBerg[j][n] / t; } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low || i > high) { for (int j = i; j < nn; j++) { m_aEigenVector[i][j] = m_aHessenBerg[i][j]; } } } // Back transformation to get eigenvectors of original matrix for (int j = nn - 1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= Math.min (j, high); k++) { z += m_aEigenVector[i][k] * m_aHessenBerg[k][j]; } m_aEigenVector[i][j] = z; } } } /** * Check for symmetry, then construct the eigenvalue decomposition Structure * to access D and V. * * @param aMatrix * Square matrix */ public EigenvalueDecomposition (@Nonnull final Matrix aMatrix) { final double [] [] aArray = aMatrix.internalGetArray (); m_nDim = aMatrix.getColumnDimension (); m_aEigenVector = new double [m_nDim] [m_nDim]; m_aEVd = new double [m_nDim]; m_aEVe = new double [m_nDim]; boolean bIsSymmetric = true; for (int nRow = 0; nRow < m_nDim; nRow++) { final double [] aRow = aArray[nRow]; for (int nCol = 0; nCol < m_nDim; nCol++) if (!EqualsHelper.equals (aRow[nCol], aArray[nCol][nRow])) { bIsSymmetric = false; break; } } m_bIsSymmetric = bIsSymmetric; if (m_bIsSymmetric) { for (int nRow = 0; nRow < m_nDim; nRow++) { final double [] aSrcRow = aArray[nRow]; System.arraycopy (aSrcRow, 0, m_aEigenVector[nRow], 0, aSrcRow.length); } // Tridiagonalize. _symmetricTred2 (); // Diagonalize. _symmetricTql2 (); } else { m_aHessenBerg = new double [m_nDim] [m_nDim]; m_aOrt = new double [m_nDim]; for (int nRow = 0; nRow < m_nDim; nRow++) { final double [] aSrcRow = aArray[nRow]; final double [] aDstRow = m_aHessenBerg[nRow]; for (int nCol = 0; nCol < m_nDim; nCol++) aDstRow[nCol] = aSrcRow[nCol]; } // Reduce to Hessenberg form. _nonsymetricOrthes (); // Reduce Hessenberg to real Schur form. _nonsymetricHqr2 (); } } /** * @return true if the input was symmetric, false if * not */ public boolean isSymmetric () { return m_bIsSymmetric; } /** * Return the eigenvector matrix * * @return V */ @Nonnull @ReturnsMutableCopy public Matrix getV () { return new Matrix (m_aEigenVector, m_nDim, m_nDim); } /** * Return the real parts of the eigenvalues * * @return real(diag(D)) */ @SuppressFBWarnings ("EI_EXPOSE_REP") @Nonnull @ReturnsMutableObject ("took code as is") public double [] directGetRealEigenvalues () { return m_aEVd; } /** * Return the imaginary parts of the eigenvalues * * @return imag(diag(D)) */ @SuppressFBWarnings ("EI_EXPOSE_REP") @Nonnull @ReturnsMutableObject ("took code as is") public double [] directGetImagEigenvalues () { return m_aEVe; } /** * Return the block diagonal eigenvalue matrix * * @return D */ @Nonnull @ReturnsMutableCopy public Matrix getD () { final Matrix aNewMatrix = new Matrix (m_nDim, m_nDim); final double [] [] aNewArray = aNewMatrix.internalGetArray (); for (int nRow = 0; nRow < m_nDim; nRow++) { final double [] aDstRow = aNewArray[nRow]; Arrays.fill (aDstRow, 0.0); aDstRow[nRow] = m_aEVd[nRow]; final double dEVe = m_aEVe[nRow]; if (dEVe > 0) aDstRow[nRow + 1] = dEVe; else if (dEVe < 0) aDstRow[nRow - 1] = dEVe; } return aNewMatrix; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy