com.helger.matrix.LUDecomposition Maven / Gradle / Ivy
/*
* Copyright (C) 2014-2024 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.matrix;
import java.util.Arrays;
import javax.annotation.Nonnull;
import com.helger.commons.annotation.ReturnsMutableCopy;
import com.helger.commons.math.MathHelper;
/**
* LU Decomposition.
*
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit
* lower triangular matrix L, an n-by-n upper triangular matrix U, and a
* permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then
* L is m-by-m and U is m-by-n.
*
*
* The LU decompostion with pivoting always exists, even if the matrix is
* singular, so the constructor will never fail. The primary use of the LU
* decomposition is in the solution of square systems of simultaneous linear
* equations. This will fail if isNonsingular() returns false.
*
*/
public class LUDecomposition
{
/**
* Array for internal storage of decomposition.
*
* @serial internal array storage.
*/
private final double [] [] m_aLU;
/**
* Row and column dimensions, and pivot sign.
*
* @serial column dimension.
* @serial row dimension.
* @serial pivot sign.
*/
private final int m_nRows;
private final int m_nCols;
private final int m_nPivSign;
/**
* Internal storage of pivot vector.
*
* @serial pivot vector.
*/
private final int [] m_aPivot;
/**
* LU Decomposition Structure to access L, U and piv.
*
* @param aMatrix
* Rectangular matrix
*/
public LUDecomposition (@Nonnull final Matrix aMatrix)
{
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
m_aLU = aMatrix.getArrayCopy ();
m_nRows = aMatrix.getRowDimension ();
m_nCols = aMatrix.getColumnDimension ();
m_aPivot = new int [m_nRows];
for (int i = 0; i < m_nRows; i++)
m_aPivot[i] = i;
int nPivSign = 1;
double [] aLUrowi;
final double [] aLUcolj = new double [m_nRows];
// Outer loop.
for (int j = 0; j < m_nCols; j++)
{
// Make a copy of the j-th column to localize references.
for (int i = 0; i < m_nRows; i++)
aLUcolj[i] = m_aLU[i][j];
// Apply previous transformations.
for (int i = 0; i < m_nRows; i++)
{
aLUrowi = m_aLU[i];
// Most of the time is spent in the following dot product.
final int kmax = Math.min (i, j);
double s = 0.0;
for (int k = 0; k < kmax; k++)
s += aLUrowi[k] * aLUcolj[k];
aLUrowi[j] = aLUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
int p = j;
for (int i = j + 1; i < m_nRows; i++)
if (MathHelper.abs (aLUcolj[i]) > MathHelper.abs (aLUcolj[p]))
p = i;
final double [] aLUj = m_aLU[j];
if (p != j)
{
final double [] aLUp = m_aLU[p];
for (int k = 0; k < m_nCols; k++)
{
final double t = aLUp[k];
aLUp[k] = aLUj[k];
aLUj[k] = t;
}
final int k = m_aPivot[p];
m_aPivot[p] = m_aPivot[j];
m_aPivot[j] = k;
nPivSign = -nPivSign;
}
// Compute multipliers.
if (j < m_nRows && aLUj[j] != 0.0)
for (int i = j + 1; i < m_nRows; i++)
m_aLU[i][j] /= aLUj[j];
}
m_nPivSign = nPivSign;
}
/*
* ------------------------ Temporary, experimental code.
* ------------------------ *\ \** LU Decomposition, computed by Gaussian
* elimination. This constructor computes L and U with the "daxpy"-based
* elimination algorithm used in LINPACK and MATLAB. In Java, we suspect the
* dot-product, Crout algorithm will be faster. We have temporarily included
* this constructor until timing experiments confirm this suspicion.
* @param A Rectangular matrix
* @param linpackflag Use Gaussian elimination. Actual value ignored.
* @return Structure to access L, U and piv.\ public LUDecomposition (Matrix
* A, int linpackflag) { // Initialize. LU = A.getArrayCopy(); m =
* A.getRowDimension(); n = A.getColumnDimension(); piv = new int[m]; for (int
* i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; // Main loop. for (int k =
* 0; k < n; k++) { // Find pivot. int p = k; for (int i = k+1; i < m; i++) {
* if (MathHelper.abs(LU[i][k]) > MathHelper.abs(LU[p][k])) { p = i; } } //
* Exchange if necessary. if (p != k) { for (int j = 0; j < n; j++) { double t
* = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t; } int t = piv[p]; piv[p] =
* piv[k]; piv[k] = t; pivsign = -pivsign; } // Compute multipliers and
* eliminate k-th column. if (LU[k][k] != 0.0) { for (int i = k+1; i < m; i++)
* { LU[i][k] /= LU[k][k]; for (int j = k+1; j < n; j++) { LU[i][j] -=
* LU[i][k]*LU[k][j]; } } } } } \* ------------------------ End of temporary
* code. ------------------------
*/
/**
* Is the matrix nonsingular?
*
* @return true if U, and hence A, is nonsingular.
*/
public boolean isNonsingular ()
{
for (int j = 0; j < m_nCols; j++)
if (m_aLU[j][j] == 0)
return false;
return true;
}
/**
* Return lower triangular factor
*
* @return L
*/
@Nonnull
@ReturnsMutableCopy
public Matrix getL ()
{
final Matrix aNewMatrix = new Matrix (m_nRows, m_nCols);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
for (int nRow = 0; nRow < m_nRows; nRow++)
{
final double [] aSrcRow = m_aLU[nRow];
final double [] aDstRow = aNewArray[nRow];
for (int nCol = 0; nCol < m_nCols; nCol++)
if (nRow > nCol)
aDstRow[nCol] = aSrcRow[nCol];
else
if (nRow == nCol)
aDstRow[nCol] = 1.0;
else
aDstRow[nCol] = 0.0;
}
return aNewMatrix;
}
/**
* Return upper triangular factor
*
* @return U
*/
@Nonnull
public Matrix getU ()
{
final Matrix aNewMatrix = new Matrix (m_nCols, m_nCols);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
for (int nRow = 0; nRow < m_nCols; nRow++)
{
final double [] aSrcRow = m_aLU[nRow];
final double [] aDstRow = aNewArray[nRow];
for (int nCol = 0; nCol < m_nCols; nCol++)
if (nRow <= nCol)
aDstRow[nCol] = aSrcRow[nCol];
else
aDstRow[nCol] = 0.0;
}
return aNewMatrix;
}
/**
* Return pivot permutation vector
*
* @return piv
*/
@Nonnull
public int [] getPivot ()
{
return Arrays.copyOf (m_aPivot, m_nRows);
}
/**
* Return pivot permutation vector as a one-dimensional double array
*
* @return (double) piv
*/
@Nonnull
public double [] getDoublePivot ()
{
final double [] vals = new double [m_nRows];
for (int i = 0; i < m_nRows; i++)
vals[i] = m_aPivot[i];
return vals;
}
/**
* Determinant
*
* @return det(A)
* @exception IllegalArgumentException
* Matrix must be square
*/
public double det ()
{
if (m_nRows != m_nCols)
throw new IllegalArgumentException ("Matrix must be square.");
double d = m_nPivSign;
for (int j = 0; j < m_nCols; j++)
d *= m_aLU[j][j];
return d;
}
/**
* Solve A*X = B
*
* @param aMatrix
* A Matrix with as many rows as A and any number of columns.
* @return X so that L*U*X = B(piv,:)
* @exception IllegalArgumentException
* Matrix row dimensions must agree.
* @exception RuntimeException
* Matrix is singular.
*/
@Nonnull
@ReturnsMutableCopy
public Matrix solve (@Nonnull final Matrix aMatrix)
{
if (aMatrix.getRowDimension () != m_nRows)
throw new IllegalArgumentException ("Matrix row dimensions must agree.");
if (!isNonsingular ())
throw new IllegalStateException ("Matrix is singular.");
// Copy right hand side with pivoting
final int nCols = aMatrix.getColumnDimension ();
final Matrix aNewMatrix = aMatrix.getMatrix (m_aPivot, 0, nCols - 1);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
// Solve L*Y = B(piv,:)
for (int k = 0; k < m_nCols; k++)
{
final double [] aNewk = aNewArray[k];
for (int i = k + 1; i < m_nCols; i++)
{
final double [] aLUi = m_aLU[i];
final double [] aNewi = aNewArray[i];
for (int j = 0; j < nCols; j++)
aNewi[j] -= aNewk[j] * aLUi[k];
}
}
// Solve U*X = Y;
for (int k = m_nCols - 1; k >= 0; k--)
{
final double [] aLUk = m_aLU[k];
final double [] aNewk = aNewArray[k];
for (int j = 0; j < nCols; j++)
aNewk[j] /= aLUk[k];
for (int i = 0; i < k; i++)
{
final double [] aLUi = m_aLU[i];
final double [] aNewi = aNewArray[i];
for (int j = 0; j < nCols; j++)
aNewi[j] -= aNewk[j] * aLUi[k];
}
}
return aNewMatrix;
}
}