com.helger.matrix.QRDecomposition Maven / Gradle / Ivy
/*
* Copyright (C) 2014-2024 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.matrix;
import javax.annotation.Nonnull;
import com.helger.commons.annotation.ReturnsMutableCopy;
import com.helger.commons.math.MathHelper;
/**
* QR Decomposition.
*
* For an m-by-n matrix A with m ≥ n, the QR decomposition is an m-by-n
* orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R.
*
*
* The QR decompostion always exists, even if the matrix does not have full
* rank, so the constructor will never fail. The primary use of the QR
* decomposition is in the least squares solution of nonsquare systems of
* simultaneous linear equations. This will fail if isFullRank() returns false.
*
*/
public class QRDecomposition
{
/**
* Array for internal storage of decomposition.
*
* @serial internal array storage.
*/
private final double [] [] m_aQR;
/**
* Row dimension.
*
* @serial row dimension.
*/
private final int m_nRows;
/**
* Column dimension.
*
* @serial column dimension.
*/
private final int m_nCols;
/**
* Array for internal storage of diagonal of R.
*
* @serial diagonal of R.
*/
private final double [] m_aRdiag;
/**
* QR Decomposition, computed by Householder reflections. Structure to access
* R and the Householder vectors and compute Q.
*
* @param aMatrix
* Rectangular matrix
*/
public QRDecomposition (@Nonnull final Matrix aMatrix)
{
// Initialize.
m_aQR = aMatrix.getArrayCopy ();
m_nRows = aMatrix.getRowDimension ();
m_nCols = aMatrix.getColumnDimension ();
m_aRdiag = new double [m_nCols];
// Main loop.
for (int k = 0; k < m_nCols; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (int i = k; i < m_nRows; i++)
nrm = MathHelper.hypot (nrm, m_aQR[i][k]);
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (m_aQR[k][k] < 0)
{
nrm = -nrm;
}
for (int i = k; i < m_nRows; i++)
{
m_aQR[i][k] /= nrm;
}
m_aQR[k][k] += 1.0;
// Apply transformation to remaining columns.
for (int j = k + 1; j < m_nCols; j++)
{
double s = 0.0;
for (int i = k; i < m_nRows; i++)
{
s += m_aQR[i][k] * m_aQR[i][j];
}
s = -s / m_aQR[k][k];
for (int i = k; i < m_nRows; i++)
{
m_aQR[i][j] += s * m_aQR[i][k];
}
}
}
m_aRdiag[k] = -nrm;
}
}
/**
* Is the matrix full rank?
*
* @return true if R, and hence A, has full rank.
*/
public boolean isFullRank ()
{
for (int j = 0; j < m_nCols; j++)
if (m_aRdiag[j] == 0)
return false;
return true;
}
/**
* Return the Householder vectors
*
* @return Lower trapezoidal matrix whose columns define the reflections
*/
@Nonnull
@ReturnsMutableCopy
public Matrix getH ()
{
final Matrix aNewMatrix = new Matrix (m_nRows, m_nCols);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
for (int nRow = 0; nRow < m_nRows; nRow++)
{
final double [] aSrcRow = m_aQR[nRow];
final double [] aDstRow = aNewArray[nRow];
for (int nCol = 0; nCol < m_nCols; nCol++)
{
aDstRow[nCol] = (nRow >= nCol ? aSrcRow[nCol] : 0d);
}
}
return aNewMatrix;
}
/**
* Return the upper triangular factor
*
* @return R
*/
@Nonnull
@ReturnsMutableCopy
public Matrix getR ()
{
final Matrix aNewMatrix = new Matrix (m_nCols, m_nCols);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
for (int nRow = 0; nRow < m_nCols; nRow++)
{
final double [] aDstRow = aNewArray[nRow];
for (int j = 0; j < m_nCols; j++)
{
if (nRow < j)
aDstRow[j] = m_aQR[nRow][j];
else
if (nRow == j)
aDstRow[j] = m_aRdiag[nRow];
else
aDstRow[j] = 0.0;
}
}
return aNewMatrix;
}
/**
* Generate and return the (economy-sized) orthogonal factor
*
* @return Q
*/
@Nonnull
@ReturnsMutableCopy
public Matrix getQ ()
{
final Matrix aNewMatrix = new Matrix (m_nRows, m_nCols);
final double [] [] aNewArray = aNewMatrix.internalGetArray ();
for (int k = m_nCols - 1; k >= 0; k--)
{
final double [] aQRk = m_aQR[k];
for (int nRow = 0; nRow < m_nRows; nRow++)
aNewArray[nRow][k] = 0.0;
aNewArray[k][k] = 1.0;
for (int j = k; j < m_nCols; j++)
{
if (aQRk[k] != 0)
{
double s = 0.0;
for (int i = k; i < m_nRows; i++)
s += m_aQR[i][k] * aNewArray[i][j];
s = -s / aQRk[k];
for (int i = k; i < m_nRows; i++)
{
aNewArray[i][j] += s * m_aQR[i][k];
}
}
}
}
return aNewMatrix;
}
/**
* Least squares solution of A*X = B
*
* @param aMatrix
* A Matrix with as many rows as A and any number of columns.
* @return X that minimizes the two norm of Q*R*X-B.
* @exception IllegalArgumentException
* Matrix row dimensions must agree.
* @exception RuntimeException
* Matrix is rank deficient.
*/
@Nonnull
@ReturnsMutableCopy
public Matrix solve (@Nonnull final Matrix aMatrix)
{
if (aMatrix.getRowDimension () != m_nRows)
throw new IllegalArgumentException ("Matrix row dimensions must agree.");
if (!isFullRank ())
throw new IllegalStateException ("Matrix is rank deficient.");
// Copy right hand side
final int nCols = aMatrix.getColumnDimension ();
final double [] [] aArray = aMatrix.getArrayCopy ();
// Compute Y = transpose(Q)*B
for (int k = 0; k < m_nCols; k++)
{
final double [] aQRk = m_aQR[k];
for (int j = 0; j < nCols; j++)
{
double s = 0.0;
for (int i = k; i < m_nRows; i++)
s += m_aQR[i][k] * aArray[i][j];
s = -s / aQRk[k];
for (int i = k; i < m_nRows; i++)
aArray[i][j] += s * m_aQR[i][k];
}
}
// Solve R*X = Y;
for (int k = m_nCols - 1; k >= 0; k--)
{
final double [] aArrayk = aArray[k];
for (int j = 0; j < nCols; j++)
aArrayk[j] /= m_aRdiag[k];
for (int i = 0; i < k; i++)
{
final double [] aSrcRow = m_aQR[i];
final double [] aDstRow = aArray[i];
for (int j = 0; j < nCols; j++)
aDstRow[j] -= aArrayk[j] * aSrcRow[k];
}
}
return new Matrix (aArray, m_nCols, nCols).getMatrix (0, m_nCols - 1, 0, nCols - 1);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy