com.helger.numbercruncher.mathutils.NewtonsRootFinder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ph-math Show documentation
Show all versions of ph-math Show documentation
Java library with basic math stuff
/**
* Copyright (C) 2014-2016 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.numbercruncher.mathutils;
import com.helger.commons.equals.EqualsHelper;
/**
* The root finder class that implements Newton's algorithm.
*/
public class NewtonsRootFinder extends AbstractRootFinder
{
private static final int MAX_ITERS = 50;
private static final float TOLERANCE = 100 * Epsilon.floatValue ();
/** x[n] value */
private float m_fXn;
/** x[n+1] value */
private float m_fXnp1;
/** previous x[n+1] value */
private float m_fPrevXnp1;
/** f(x[n]) */
private float m_fFn;
/** f(x[n+1]) */
private float m_fFnp1;
/** f'(x[n]) */
private float m_fFpn;
/**
* Constructor.
*
* @param function
* the functions whose roots to find
*/
public NewtonsRootFinder (final AbstractFunction function)
{
super (function, MAX_ITERS);
}
/**
* Reset.
*
* @param x0
* the initial x-value
*/
public void reset (final float x0)
{
super.reset ();
m_fXnp1 = x0;
m_fFnp1 = m_aFunction.at (m_fXnp1);
}
// ---------//
// Getters //
// ---------//
/**
* Return the current value of x[n].
*
* @return the value
*/
public float getXn ()
{
return m_fXn;
}
/**
* Return the current value of x[n+1].
*
* @return the value
*/
public float getXnp1 ()
{
return m_fXnp1;
}
/**
* Return the current value of f(x[n]).
*
* @return the value
*/
public float getFn ()
{
return m_fFn;
}
/**
* Return the current value of f(x[n+1]).
*
* @return the value
*/
public float getFnp1 ()
{
return m_fFnp1;
}
/**
* Return the current value of f'(x[n]).
*
* @return the value
*/
public float getFpn ()
{
return m_fFpn;
}
// -----------------------------//
// RootFinder method overrides //
// -----------------------------//
/**
* Do Newton's iteration procedure.
*
* @param n
* the iteration count
*/
@Override
protected void doIterationProcedure (final int n)
{
m_fXn = m_fXnp1;
}
/**
* Compute the next position of x[n+1].
*/
@Override
protected void computeNextPosition ()
{
m_fFn = m_fFnp1;
m_fFpn = m_aFunction.derivativeAt (m_fXn);
// Compute the value of x[n+1].
m_fPrevXnp1 = m_fXnp1;
m_fXnp1 = m_fXn - m_fFn / m_fFpn;
m_fFnp1 = m_aFunction.at (m_fXnp1);
}
/**
* Check the position of x[n+1].
*
* @throws PositionUnchangedException
*/
@Override
protected void checkPosition () throws AbstractRootFinder.PositionUnchangedException
{
if (EqualsHelper.equals (m_fXnp1, m_fPrevXnp1))
{
throw new AbstractRootFinder.PositionUnchangedException ();
}
}
/**
* Indicate whether or not the algorithm has converged.
*
* @return true if converged, else false
*/
@Override
protected boolean hasConverged ()
{
return Math.abs (m_fFnp1) < TOLERANCE;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy