com.helger.numbercruncher.mathutils.RegressionLine Maven / Gradle / Ivy
/**
* Copyright (C) 2014-2016 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.numbercruncher.mathutils;
/**
* A least-squares regression line function.
*/
public class RegressionLine implements IEvaluatable
{
/** sum of x */
private double m_dSumX;
/** sum of y */
private double m_dSumY;
/** sum of x*x */
private double m_dSumXX;
/** sum of x*y */
private double m_dSumXY;
/** line coefficient a0 */
private float m_fA0;
/** line coefficient a1 */
private float m_fA1;
/** number of data points */
private int m_nDataPoints;
/** true if coefficients valid */
private boolean m_bCoefsValid;
/**
* Constructor.
*/
public RegressionLine ()
{}
/**
* Constructor.
*
* @param data
* the array of data points
*/
public RegressionLine (final DataPoint [] data)
{
for (final DataPoint element : data)
{
addDataPoint (element);
}
}
/**
* Return the current number of data points.
*
* @return the count
*/
public int getDataPointCount ()
{
return m_nDataPoints;
}
/**
* Return the coefficient a0.
*
* @return the value of a0
*/
public float getA0 ()
{
_validateCoefficients ();
return m_fA0;
}
/**
* Return the coefficient a1.
*
* @return the value of a1
*/
public float getA1 ()
{
_validateCoefficients ();
return m_fA1;
}
/**
* Return the sum of the x values.
*
* @return the sum
*/
public double getSumX ()
{
return m_dSumX;
}
/**
* Return the sum of the y values.
*
* @return the sum
*/
public double getSumY ()
{
return m_dSumY;
}
/**
* Return the sum of the x*x values.
*
* @return the sum
*/
public double getSumXX ()
{
return m_dSumXX;
}
/**
* Return the sum of the x*y values.
*
* @return the sum
*/
public double getSumXY ()
{
return m_dSumXY;
}
/**
* Add a new data point: Update the sums.
*
* @param dataPoint
* the new data point
*/
public void addDataPoint (final DataPoint dataPoint)
{
m_dSumX += dataPoint.getX ();
m_dSumY += dataPoint.getY ();
m_dSumXX += dataPoint.getX () * dataPoint.getX ();
m_dSumXY += dataPoint.getX () * dataPoint.getY ();
++m_nDataPoints;
m_bCoefsValid = false;
}
/**
* Return the value of the regression line function at x.
*
* @param x
* the value of x
* @return the value of the function at x
*/
public float at (final float x)
{
if (m_nDataPoints < 2)
return Float.NaN;
_validateCoefficients ();
return m_fA0 + m_fA1 * x;
}
/**
* Reset.
*/
public void reset ()
{
m_nDataPoints = 0;
m_dSumX = m_dSumY = m_dSumXX = m_dSumXY = 0;
m_bCoefsValid = false;
}
/**
* Validate the coefficients.
*/
private void _validateCoefficients ()
{
if (m_bCoefsValid)
return;
if (m_nDataPoints >= 2)
{
final float xBar = (float) m_dSumX / m_nDataPoints;
final float yBar = (float) m_dSumY / m_nDataPoints;
m_fA1 = (float) ((m_nDataPoints * m_dSumXY - m_dSumX * m_dSumY) / (m_nDataPoints * m_dSumXX - m_dSumX * m_dSumX));
m_fA0 = yBar - m_fA1 * xBar;
}
else
{
m_fA0 = m_fA1 = Float.NaN;
}
m_bCoefsValid = true;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy