com.helger.numbercruncher.matrix.InvertibleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ph-math Show documentation
Show all versions of ph-math Show documentation
Java library with basic math stuff
/**
* Copyright (C) 2014-2016 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.numbercruncher.matrix;
/**
* A matrix that can be inverted. Also, compute its determinant, norm, and
* condition number.
*/
public class InvertibleMatrix extends LinearSystem
{
/**
* Constructor.
*
* @param n
* the number of rows = the number of columns
*/
public InvertibleMatrix (final int n)
{
super (n);
}
/**
* Constructor.
*
* @param values
* the array of values
*/
public InvertibleMatrix (final float values[][])
{
super (values);
}
/**
* Compute the inverse of this matrix.
*
* @return the inverse matrix
* @throws MatrixException
* if an error occurred
*/
public InvertibleMatrix inverse () throws MatrixException
{
final InvertibleMatrix inverse = new InvertibleMatrix (m_nRows);
final IdentityMatrix identity = new IdentityMatrix (m_nRows);
// Compute each column of the inverse matrix
// using columns of the identity matrix.
for (int c = 0; c < m_nCols; ++c)
{
final ColumnVector col = solve (identity.getColumn (c), true);
inverse.setColumn (col, c);
}
return inverse;
}
/**
* Compute the determinant.
*
* @return the determinant
* @throws MatrixException
* if an error occurred
*/
public float determinant () throws MatrixException
{
decompose ();
// Each row exchange during forward elimination flips the sign
// of the determinant, so check for an odd number of exchanges.
float determinant = ((m_nExchangeCount & 1) == 0) ? 1 : -1;
// Form the product of the diagonal elements of matrix U.
for (int i = 0; i < m_nRows; ++i)
{
final int pi = m_aPermutation[i]; // permuted index
determinant *= m_aLU.at (pi, i);
}
return determinant;
}
/**
* Compute the Euclidean norm of this matrix.
*
* @return the norm
*/
public float norm ()
{
float sum = 0;
for (int r = 0; r < m_nRows; ++r)
{
for (int c = 0; c < m_nCols; ++c)
{
final float v = m_aValues[r][c];
sum += v * v;
}
}
return (float) Math.sqrt (sum);
}
/**
* Compute the condition number based on the Euclidean norm.
*
* @return the condition number
*/
public float condition () throws MatrixException
{
return norm () * inverse ().norm ();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy