com.helger.numbercruncher.mathutils.Complex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ph-math Show documentation
Show all versions of ph-math Show documentation
Java library with basic math stuff
/*
* Copyright (C) 2014-2022 Philip Helger (www.helger.com)
* philip[at]helger[dot]com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.helger.numbercruncher.mathutils;
/**
* Perform basic complex arithmetic. The complex objects are immutable, and
* complex operations create new complex objects.
*/
public class Complex
{
/** the real part */
private final float m_fReal;
/** the imaginary part */
private final float m_fImaginary;
/**
* Constructor.
*
* @param real
* the real part
* @param imaginary
* the imaginary part
*/
public Complex (final float real, final float imaginary)
{
m_fReal = real;
m_fImaginary = imaginary;
}
/**
* Return this complex number's real part.
*
* @return the real part
*/
public float real ()
{
return m_fReal;
}
/**
* Return this complex number's imaginary part.
*
* @return the imaginary part
*/
public float imaginary ()
{
return m_fImaginary;
}
/**
* @return Compute this complex number's modulus
*/
public float modulus ()
{
return (float) Math.sqrt (m_fReal * m_fReal + m_fImaginary * m_fImaginary);
}
/**
* Return whether or not this complex number is equal to another one.
*
* @param z
* the other complex number
* @return true if equal, false if not
*/
public boolean equal (final Complex z)
{
return (m_fReal == z.real ()) && (m_fImaginary == z.imaginary ());
}
/**
* Add another complex number to this one.
*
* @param z
* the other complex number
* @return a new complex number that is the sum
*/
public Complex add (final Complex z)
{
return new Complex (m_fReal + z.real (), m_fImaginary + z.imaginary ());
}
/**
* Subtract another complex number from this one.
*
* @param z
* the other complex number
* @return a new complex number that is the difference
*/
public Complex subtract (final Complex z)
{
return new Complex (m_fReal - z.real (), m_fImaginary - z.imaginary ());
}
/**
* Multiply this complex number by another one.
*
* @param z
* the other complex number
* @return a new complex number that is the product
*/
public Complex multiply (final Complex z)
{
return new Complex (m_fReal * z.real () - m_fImaginary * z.imaginary (),
m_fReal * z.imaginary () + m_fImaginary * z.real ());
}
/**
* Divide this complex number by another one.
*
* @param z
* the other complex number
* @return a new complex number that is the quotient
*/
public Complex divide (final Complex z)
{
final float denom = z.real () * z.real () + z.imaginary () * z.imaginary ();
final float qr = (m_fReal * z.real () + m_fImaginary * z.imaginary ()) / denom;
final float qi = (m_fImaginary * z.real () - m_fReal * z.imaginary ()) / denom;
return new Complex (qr, qi);
}
/**
* Return the string representation of this complex number.
*
* @return the string representation
*/
@Override
public String toString ()
{
final String operator = (m_fImaginary >= 0) ? "+" : "-";
return m_fReal + operator + Math.abs (m_fImaginary) + "i";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy