co.paralleluniverse.strands.concurrent.AbstractQueuedSynchronizer Maven / Gradle / Ivy
/*
* Quasar: lightweight threads and actors for the JVM.
* Copyright (c) 2013-2014, Parallel Universe Software Co. All rights reserved.
*
* This program and the accompanying materials are dual-licensed under
* either the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation
*
* or (per the licensee's choosing)
*
* under the terms of the GNU Lesser General Public License version 3.0
* as published by the Free Software Foundation.
*
/*
* Based on code:
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
/*
* Adaptations:
* thread -> strand
* Thread -> Strand
* LockSupport -> Strand
*
* throws SuspendExceution
*
* http://gee.cs.oswego.edu/dl/papers/aqs.pdf
*/
package co.paralleluniverse.strands.concurrent;
import co.paralleluniverse.fibers.SuspendExecution;
import co.paralleluniverse.fibers.Suspendable;
import co.paralleluniverse.strands.Strand;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReadWriteLock;
/**
* Provides a framework for implementing blocking locks and related
* synchronizers (semaphores, events, etc) that rely on
* first-in-first-out (FIFO) wait queues. This class is designed to
* be a useful basis for most kinds of synchronizers that rely on a
* single atomic {@code int} value to represent state. Subclasses
* must define the protected methods that change this state, and which
* define what that state means in terms of this object being acquired
* or released. Given these, the other methods in this class carry
* out all queuing and blocking mechanics. Subclasses can maintain
* other state fields, but only the atomically updated {@code int}
* value manipulated using methods {@link #getState}, {@link
* #setState} and {@link #compareAndSetState} is tracked with respect
* to synchronization.
*
* Subclasses should be defined as non-public internal helper
* classes that are used to implement the synchronization properties
* of their enclosing class. Class
* {@code AbstractQueuedSynchronizer} does not implement any
* synchronization interface. Instead it defines methods such as
* {@link #acquireInterruptibly} that can be invoked as
* appropriate by concrete locks and related synchronizers to
* implement their public methods.
*
* This class supports either or both a default exclusive
* mode and a shared mode. When acquired in exclusive mode,
* attempted acquires by other strands cannot succeed. Shared mode
* acquires by multiple strands may (but need not) succeed. This class
* does not "understand" these differences except in the
* mechanical sense that when a shared mode acquire succeeds, the next
* waiting strand (if one exists) must also determine whether it can
* acquire as well. Strands waiting in the different modes share the
* same FIFO queue. Usually, implementation subclasses support only
* one of these modes, but both can come into play for example in a
* {@link ReadWriteLock}. Subclasses that support only exclusive or
* only shared modes need not define the methods supporting the unused mode.
*
* This class defines a nested {@link ConditionObject} class that
* can be used as a {@link Condition} implementation by subclasses
* supporting exclusive mode for which method {@link
* #isHeldExclusively} reports whether synchronization is exclusively
* held with respect to the current strand, method {@link #release}
* invoked with the current {@link #getState} value fully releases
* this object, and {@link #acquire}, given this saved state value,
* eventually restores this object to its previous acquired state. No
* {@code AbstractQueuedSynchronizer} method otherwise creates such a
* condition, so if this constraint cannot be met, do not use it. The
* behavior of {@link ConditionObject} depends of course on the
* semantics of its synchronizer implementation.
*
* This class provides inspection, instrumentation, and monitoring
* methods for the internal queue, as well as similar methods for
* condition objects. These can be exported as desired into classes
* using an {@code AbstractQueuedSynchronizer} for their
* synchronization mechanics.
*
* Serialization of this class stores only the underlying atomic
* integer maintaining state, so deserialized objects have empty
* strand queues. Typical subclasses requiring serializability will
* define a {@code readObject} method that restores this to a known
* initial state upon deserialization.
*
* Usage
*
* To use this class as the basis of a synchronizer, redefine the
* following methods, as applicable, by inspecting and/or modifying
* the synchronization state using {@link #getState}, {@link
* #setState} and/or {@link #compareAndSetState}:
*
*
* - {@link #tryAcquire}
*
- {@link #tryRelease}
*
- {@link #tryAcquireShared}
*
- {@link #tryReleaseShared}
*
- {@link #isHeldExclusively}
*
*
* Each of these methods by default throws {@link
* UnsupportedOperationException}. Implementations of these methods
* must be internally strand-safe, and should in general be short and
* not block. Defining these methods is the only supported
* means of using this class. All other methods are declared
* {@code final} because they cannot be independently varied.
*
* You may also find the inherited methods from {@link
* AbstractOwnableSynchronizer} useful to keep track of the strand
* owning an exclusive synchronizer. You are encouraged to use them
* -- this enables monitoring and diagnostic tools to assist users in
* determining which strands hold locks.
*
* Even though this class is based on an internal FIFO queue, it
* does not automatically enforce FIFO acquisition policies. The core
* of exclusive synchronization takes the form:
*
*
* Acquire:
* while (!tryAcquire(arg)) {
* enqueue strand if it is not already queued;
* possibly block current strand;
* }
*
* Release:
* if (tryRelease(arg))
* unblock the first queued strand;
*
*
* (Shared mode is similar but may involve cascading signals.)
*
* Because checks in acquire are invoked before
* enqueuing, a newly acquiring strand may barge ahead of
* others that are blocked and queued. However, you can, if desired,
* define {@code tryAcquire} and/or {@code tryAcquireShared} to
* disable barging by internally invoking one or more of the inspection
* methods, thereby providing a fair FIFO acquisition order.
* In particular, most fair synchronizers can define {@code tryAcquire}
* to return {@code false} if {@link #hasQueuedPredecessors} (a method
* specifically designed to be used by fair synchronizers) returns
* {@code true}. Other variations are possible.
*
* Throughput and scalability are generally highest for the
* default barging (also known as greedy,
* renouncement, and convoy-avoidance) strategy.
* While this is not guaranteed to be fair or starvation-free, earlier
* queued strands are allowed to recontend before later queued
* strands, and each recontention has an unbiased chance to succeed
* against incoming strands. Also, while acquires do not
* "spin" in the usual sense, they may perform multiple
* invocations of {@code tryAcquire} interspersed with other
* computations before blocking. This gives most of the benefits of
* spins when exclusive synchronization is only briefly held, without
* most of the liabilities when it isn't. If so desired, you can
* augment this by preceding calls to acquire methods with
* "fast-path" checks, possibly prechecking {@link #hasContended}
* and/or {@link #hasQueuedStrands} to only do so if the synchronizer
* is likely not to be contended.
*
* This class provides an efficient and scalable basis for
* synchronization in part by specializing its range of use to
* synchronizers that can rely on {@code int} state, acquire, and
* release parameters, and an internal FIFO wait queue. When this does
* not suffice, you can build synchronizers from a lower level using
* {@link java.util.concurrent.atomic atomic} classes, your own custom
* {@link java.util.Queue} classes, and {@link LockSupport} blocking
* support.
*
* Usage Examples
*
* Here is a non-reentrant mutual exclusion lock class that uses
* the value zero to represent the unlocked state, and one to
* represent the locked state. While a non-reentrant lock
* does not strictly require recording of the current owner
* strand, this class does so anyway to make usage easier to monitor.
* It also supports conditions and exposes
* one of the instrumentation methods:
*
* {@code
* class Mutex implements Lock, java.io.Serializable {
*
* // Our internal helper class
* private static class Sync extends AbstractQueuedSynchronizer {
* // Reports whether in locked state
* protected boolean isHeldExclusively() {
* return getState() == 1;
* }
*
* // Acquires the lock if state is zero
* public boolean tryAcquire(int acquires) {
* assert acquires == 1; // Otherwise unused
* if (compareAndSetState(0, 1)) {
* setExclusiveOwnerStrand(Strand.currentStrand());
* return true;
* }
* return false;
* }
*
* // Releases the lock by setting state to zero
* protected boolean tryRelease(int releases) {
* assert releases == 1; // Otherwise unused
* if (getState() == 0) throw new IllegalMonitorStateException();
* setExclusiveOwnerStrand(null);
* setState(0);
* return true;
* }
*
* // Provides a Condition
* Condition newCondition() { return new ConditionObject(); }
*
* // Deserializes properly
* private void readObject(ObjectInputStream s)
* throws IOException, ClassNotFoundException {
* s.defaultReadObject();
* setState(0); // reset to unlocked state
* }
* }
*
* // The sync object does all the hard work. We just forward to it.
* private final Sync sync = new Sync();
*
* public void lock() { sync.acquire(1); }
* public boolean tryLock() { return sync.tryAcquire(1); }
* public void unlock() { sync.release(1); }
* public Condition newCondition() { return sync.newCondition(); }
* public boolean isLocked() { return sync.isHeldExclusively(); }
* public boolean hasQueuedStrands() { return sync.hasQueuedStrands(); }
* public void lockInterruptibly() throws InterruptedException {
* sync.acquireInterruptibly(1);
* }
* public boolean tryLock(long timeout, TimeUnit unit)
* throws InterruptedException {
* return sync.tryAcquireNanos(1, unit.toNanos(timeout));
* }
* }}
*
* Here is a latch class that is like a
* {@link java.util.concurrent.CountDownLatch CountDownLatch}
* except that it only requires a single {@code signal} to
* fire. Because a latch is non-exclusive, it uses the {@code shared}
* acquire and release methods.
*
* {@code
* class BooleanLatch {
*
* private static class Sync extends AbstractQueuedSynchronizer {
* boolean isSignalled() { return getState() != 0; }
*
* protected int tryAcquireShared(int ignore) {
* return isSignalled() ? 1 : -1;
* }
*
* protected boolean tryReleaseShared(int ignore) {
* setState(1);
* return true;
* }
* }
*
* private final Sync sync = new Sync();
* public boolean isSignalled() { return sync.isSignalled(); }
* public void signal() { sync.releaseShared(1); }
* public void await() throws InterruptedException {
* sync.acquireSharedInterruptibly(1);
* }
* }}
*
* @since 1.5
* @author Doug Lea
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 7373984972572414691L;
/**
* Creates a new {@code AbstractQueuedSynchronizer} instance
* with initial synchronization state of zero.
*/
protected AbstractQueuedSynchronizer() { }
/**
* Wait queue node class.
*
* The wait queue is a variant of a "CLH" (Craig, Landin, and
* Hagersten) lock queue. CLH locks are normally used for
* spinlocks. We instead use them for blocking synchronizers, but
* use the same basic tactic of holding some of the control
* information about a strand in the predecessor of its node. A
* "status" field in each node keeps track of whether a strand
* should block. A node is signalled when its predecessor
* releases. Each node of the queue otherwise serves as a
* specific-notification-style monitor holding a single waiting
* strand. The status field does NOT control whether strands are
* granted locks etc though. A strand may try to acquire if it is
* first in the queue. But being first does not guarantee success;
* it only gives the right to contend. So the currently released
* contender strand may need to rewait.
*
*
To enqueue into a CLH lock, you atomically splice it in as new
* tail. To dequeue, you just set the head field.
*
* +------+ prev +-----+ +-----+
* head | | <---- | | <---- | | tail
* +------+ +-----+ +-----+
*
*
* Insertion into a CLH queue requires only a single atomic
* operation on "tail", so there is a simple atomic point of
* demarcation from unqueued to queued. Similarly, dequeuing
* involves only updating the "head". However, it takes a bit
* more work for nodes to determine who their successors are,
* in part to deal with possible cancellation due to timeouts
* and interrupts.
*
*
The "prev" links (not used in original CLH locks), are mainly
* needed to handle cancellation. If a node is cancelled, its
* successor is (normally) relinked to a non-cancelled
* predecessor. For explanation of similar mechanics in the case
* of spin locks, see the papers by Scott and Scherer at
* http://www.cs.rochester.edu/u/scott/synchronization/
*
*
We also use "next" links to implement blocking mechanics.
* The strand id for each node is kept in its own node, so a
* predecessor signals the next node to wake up by traversing
* next link to determine which strand it is. Determination of
* successor must avoid races with newly queued nodes to set
* the "next" fields of their predecessors. This is solved
* when necessary by checking backwards from the atomically
* updated "tail" when a node's successor appears to be null.
* (Or, said differently, the next-links are an optimization
* so that we don't usually need a backward scan.)
*
*
Cancellation introduces some conservatism to the basic
* algorithms. Since we must poll for cancellation of other
* nodes, we can miss noticing whether a cancelled node is
* ahead or behind us. This is dealt with by always unparking
* successors upon cancellation, allowing them to stabilize on
* a new predecessor, unless we can identify an uncancelled
* predecessor who will carry this responsibility.
*
*
CLH queues need a dummy header node to get started. But
* we don't create them on construction, because it would be wasted
* effort if there is never contention. Instead, the node
* is constructed and head and tail pointers are set upon first
* contention.
*
*
Strands waiting on Conditions use the same nodes, but
* use an additional link. Conditions only need to link nodes
* in simple (non-concurrent) linked queues because they are
* only accessed when exclusively held. Upon await, a node is
* inserted into a condition queue. Upon signal, the node is
* transferred to the main queue. A special value of status
* field is used to mark which queue a node is on.
*
*
Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill
* Scherer and Michael Scott, along with members of JSR-166
* expert group, for helpful ideas, discussions, and critiques
* on the design of this class.
*/
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/** waitStatus value to indicate strand has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's strand needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate strand is waiting on condition */
static final int CONDITION = -2;
/**
* waitStatus value to indicate the next acquireShared should
* unconditionally propagate
*/
static final int PROPAGATE = -3;
/**
* Status field, taking on only the values:
* SIGNAL: The successor of this node is (or will soon be)
* blocked (via park), so the current node must
* unpark its successor when it releases or
* cancels. To avoid races, acquire methods must
* first indicate they need a signal,
* then retry the atomic acquire, and then,
* on failure, block.
* CANCELLED: This node is cancelled due to timeout or interrupt.
* Nodes never leave this state. In particular,
* a strand with cancelled node never again blocks.
* CONDITION: This node is currently on a condition queue.
* It will not be used as a sync queue node
* until transferred, at which time the status
* will be set to 0. (Use of this value here has
* nothing to do with the other uses of the
* field, but simplifies mechanics.)
* PROPAGATE: A releaseShared should be propagated to other
* nodes. This is set (for head node only) in
* doReleaseShared to ensure propagation
* continues, even if other operations have
* since intervened.
* 0: None of the above
*
* The values are arranged numerically to simplify use.
* Non-negative values mean that a node doesn't need to
* signal. So, most code doesn't need to check for particular
* values, just for sign.
*
* The field is initialized to 0 for normal sync nodes, and
* CONDITION for condition nodes. It is modified using CAS
* (or when possible, unconditional volatile writes).
*/
volatile int waitStatus;
/**
* Link to predecessor node that current node/strand relies on
* for checking waitStatus. Assigned during enqueuing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled strand never succeeds in acquiring, and a strand only
* cancels itself, not any other node.
*/
volatile Node prev;
/**
* Link to the successor node that the current node/strand
* unparks upon release. Assigned during enqueuing, adjusted
* when bypassing cancelled predecessors, and nulled out (for
* sake of GC) when dequeued. The enq operation does not
* assign next field of a predecessor until after attachment,
* so seeing a null next field does not necessarily mean that
* node is at end of queue. However, if a next field appears
* to be null, we can scan prev's from the tail to
* double-check. The next field of cancelled nodes is set to
* point to the node itself instead of null, to make life
* easier for isOnSyncQueue.
*/
volatile Node next;
/**
* The strand that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Strand strand;
/**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
Node nextWaiter;
/**
* Returns true if node is waiting in shared mode.
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* Returns previous node, or throws NullPointerException if null.
* Use when predecessor cannot be null. The null check could
* be elided, but is present to help the VM.
*
* @return the predecessor of this node
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Strand strand, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.strand = strand;
}
Node(Strand strand, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.strand = strand;
}
}
/**
* Head of the wait queue, lazily initialized. Except for
* initialization, it is modified only via method setHead. Note:
* If head exists, its waitStatus is guaranteed not to be
* CANCELLED.
*/
private transient volatile Node head;
/**
* Tail of the wait queue, lazily initialized. Modified only via
* method enq to add new wait node.
*/
private transient volatile Node tail;
/**
* The synchronization state.
*/
private volatile int state;
/**
* Returns the current value of synchronization state.
* This operation has memory semantics of a {@code volatile} read.
* @return current state value
*/
protected final int getState() {
return state;
}
/**
* Sets the value of synchronization state.
* This operation has memory semantics of a {@code volatile} write.
* @param newState the new state value
*/
protected final void setState(int newState) {
state = newState;
}
/**
* Atomically sets synchronization state to the given updated
* value if the current state value equals the expected value.
* This operation has memory semantics of a {@code volatile} read
* and write.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that the actual
* value was not equal to the expected value.
*/
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return STATE.compareAndSet(this, expect, update);
}
// Queuing utilities
/**
* The number of nanoseconds for which it is faster to spin
* rather than to use timed park. A rough estimate suffices
* to improve responsiveness with very short timeouts.
*/
static final long spinForTimeoutThreshold = 1000L;
/**
* Inserts node into queue, initializing if necessary. See picture above.
* @param node the node to insert
* @return node's predecessor
*/
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
/**
* Creates and enqueues node for current strand and given mode.
*
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
private Node addWaiter(Node mode) {
Node node = new Node(Strand.currentStrand(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
/**
* Sets head of queue to be node, thus dequeuing. Called only by
* acquire methods. Also nulls out unused fields for sake of GC
* and to suppress unnecessary signals and traversals.
*
* @param node the node
*/
private void setHead(Node node) {
head = node;
node.strand = null;
node.prev = null;
}
/**
* Wakes up node's successor, if one exists.
*
* @param node the node
*/
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting strand.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Strand to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
Strand.unpark(s.strand);
}
/**
* Release action for shared mode -- signals successor and ensures
* propagation. (Note: For exclusive mode, release just amounts
* to calling unparkSuccessor of head if it needs signal.)
*/
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
/**
* Sets head of queue, and checks if successor may be waiting
* in shared mode, if so propagating if either propagate > 0 or
* PROPAGATE status was set.
*
* @param node the node
* @param propagate the return value from a tryAcquireShared
*/
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 || h == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
// Utilities for various versions of acquire
/**
* Cancels an ongoing attempt to acquire.
*
* @param node the node
*/
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)
return;
node.strand = null;
// Skip cancelled predecessors
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other strands.
node.waitStatus = Node.CANCELLED;
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.strand != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
/**
* Checks and updates status for a node that failed to acquire.
* Returns true if strand should block. This is the main signal
* control in all acquire loops. Requires that pred == node.prev.
*
* @param pred node's predecessor holding status
* @param node the node
* @return {@code true} if strand should block
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
/**
* Convenience method to interrupt current strand.
*/
static void selfInterrupt() {
Strand.currentStrand().interrupt();
}
/**
* Convenience method to park and then check if interrupted
*
* @return {@code true} if interrupted
*/
private boolean parkAndCheckInterrupt() throws SuspendExecution {
Strand.park(this);
return Strand.interrupted();
}
/*
* Various flavors of acquire, varying in exclusive/shared and
* control modes. Each is mostly the same, but annoyingly
* different. Only a little bit of factoring is possible due to
* interactions of exception mechanics (including ensuring that we
* cancel if tryAcquire throws exception) and other control, at
* least not without hurting performance too much.
*/
/**
* Acquires in exclusive uninterruptible mode for strand already in
* queue. Used by condition wait methods as well as acquire.
*
* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) throws SuspendExecution {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Acquires in exclusive interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireInterruptibly(int arg)
throws InterruptedException, SuspendExecution {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Acquires in exclusive timed mode.
*
* @param arg the acquire argument
* @param nanosTimeout max wait time
* @return {@code true} if acquired
*/
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException, SuspendExecution {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
Strand.parkNanos(this, nanosTimeout);
if (Strand.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Acquires in shared uninterruptible mode.
* @param arg the acquire argument
*/
private void doAcquireShared(int arg) throws SuspendExecution {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Acquires in shared interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException, SuspendExecution {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Acquires in shared timed mode.
*
* @param arg the acquire argument
* @param nanosTimeout max wait time
* @return {@code true} if acquired
*/
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException, SuspendExecution {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
Strand.parkNanos(this, nanosTimeout);
if (Strand.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// Main exported methods
/**
* Attempts to acquire in exclusive mode. This method should query
* if the state of the object permits it to be acquired in the
* exclusive mode, and if so to acquire it.
*
*
This method is always invoked by the strand performing
* acquire. If this method reports failure, the acquire method
* may queue the strand, if it is not already queued, until it is
* signalled by a release from some other strand. This can be used
* to implement method {@link Lock#tryLock()}.
*
*
The default
* implementation throws {@link UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
* @return {@code true} if successful. Upon success, this object has
* been acquired.
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to set the state to reflect a release in exclusive
* mode.
*
*
This method is always invoked by the strand performing release.
*
*
The default implementation throws
* {@link UnsupportedOperationException}.
*
* @param arg the release argument. This value is always the one
* passed to a release method, or the current state value upon
* entry to a condition wait. The value is otherwise
* uninterpreted and can represent anything you like.
* @return {@code true} if this object is now in a fully released
* state, so that any waiting strands may attempt to acquire;
* and {@code false} otherwise.
* @throws IllegalMonitorStateException if releasing would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to acquire in shared mode. This method should query if
* the state of the object permits it to be acquired in the shared
* mode, and if so to acquire it.
*
*
This method is always invoked by the strand performing
* acquire. If this method reports failure, the acquire method
* may queue the strand, if it is not already queued, until it is
* signalled by a release from some other strand.
*
*
The default implementation throws {@link
* UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
* @return a negative value on failure; zero if acquisition in shared
* mode succeeded but no subsequent shared-mode acquire can
* succeed; and a positive value if acquisition in shared
* mode succeeded and subsequent shared-mode acquires might
* also succeed, in which case a subsequent waiting strand
* must check availability. (Support for three different
* return values enables this method to be used in contexts
* where acquires only sometimes act exclusively.) Upon
* success, this object has been acquired.
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to set the state to reflect a release in shared mode.
*
*
This method is always invoked by the strand performing release.
*
*
The default implementation throws
* {@link UnsupportedOperationException}.
*
* @param arg the release argument. This value is always the one
* passed to a release method, or the current state value upon
* entry to a condition wait. The value is otherwise
* uninterpreted and can represent anything you like.
* @return {@code true} if this release of shared mode may permit a
* waiting acquire (shared or exclusive) to succeed; and
* {@code false} otherwise
* @throws IllegalMonitorStateException if releasing would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
/**
* Returns {@code true} if synchronization is held exclusively with
* respect to the current (calling) strand. This method is invoked
* upon each call to a non-waiting {@link ConditionObject} method.
* (Waiting methods instead invoke {@link #release}.)
*
*
The default implementation throws {@link
* UnsupportedOperationException}. This method is invoked
* internally only within {@link ConditionObject} methods, so need
* not be defined if conditions are not used.
*
* @return {@code true} if synchronization is held exclusively;
* {@code false} otherwise
* @throws UnsupportedOperationException if conditions are not supported
*/
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
/**
* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},
* returning on success. Otherwise the strand is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquire} until success. This method can be used
* to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
@Suspendable
public final void acquire(int arg) {
try {
if (!tryAcquire(arg)
&& acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Acquires in exclusive mode, aborting if interrupted.
* Implemented by first checking interrupt status, then invoking
* at least once {@link #tryAcquire}, returning on
* success. Otherwise the strand is queued, possibly repeatedly
* blocking and unblocking, invoking {@link #tryAcquire}
* until success or the strand is interrupted. This method can be
* used to implement method {@link Lock#lockInterruptibly}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public final void acquireInterruptibly(int arg)
throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Attempts to acquire in exclusive mode, aborting if interrupted,
* and failing if the given timeout elapses. Implemented by first
* checking interrupt status, then invoking at least once {@link
* #tryAcquire}, returning on success. Otherwise, the strand is
* queued, possibly repeatedly blocking and unblocking, invoking
* {@link #tryAcquire} until success or the strand is interrupted
* or the timeout elapses. This method can be used to implement
* method {@link Lock#tryLock(long, TimeUnit)}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
* @param nanosTimeout the maximum number of nanoseconds to wait
* @return {@code true} if acquired; {@code false} if timed out
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
return tryAcquire(arg)
|| doAcquireNanos(arg, nanosTimeout);
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Releases in exclusive mode. Implemented by unblocking one or
* more strands if {@link #tryRelease} returns true.
* This method can be used to implement method {@link Lock#unlock}.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryRelease} but is otherwise uninterpreted and
* can represent anything you like.
* @return the value returned from {@link #tryRelease}
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
/**
* Acquires in shared mode, ignoring interrupts. Implemented by
* first invoking at least once {@link #tryAcquireShared},
* returning on success. Otherwise the strand is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquireShared} until success.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquireShared} but is otherwise uninterpreted
* and can represent anything you like.
*/
@Suspendable
public final void acquireShared(int arg) {
try {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Acquires in shared mode, aborting if interrupted. Implemented
* by first checking interrupt status, then invoking at least once
* {@link #tryAcquireShared}, returning on success. Otherwise the
* strand is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the strand
* is interrupted.
* @param arg the acquire argument.
* This value is conveyed to {@link #tryAcquireShared} but is
* otherwise uninterpreted and can represent anything
* you like.
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Attempts to acquire in shared mode, aborting if interrupted, and
* failing if the given timeout elapses. Implemented by first
* checking interrupt status, then invoking at least once {@link
* #tryAcquireShared}, returning on success. Otherwise, the
* strand is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the strand
* is interrupted or the timeout elapses.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquireShared} but is otherwise uninterpreted
* and can represent anything you like.
* @param nanosTimeout the maximum number of nanoseconds to wait
* @return {@code true} if acquired; {@code false} if timed out
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0
|| doAcquireSharedNanos(arg, nanosTimeout);
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Releases in shared mode. Implemented by unblocking one or more
* strands if {@link #tryReleaseShared} returns true.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryReleaseShared} but is otherwise uninterpreted
* and can represent anything you like.
* @return the value returned from {@link #tryReleaseShared}
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Queue inspection methods
/**
* Queries whether any strands are waiting to acquire. Note that
* because cancellations due to interrupts and timeouts may occur
* at any time, a {@code true} return does not guarantee that any
* other strand will ever acquire.
*
*
In this implementation, this operation returns in
* constant time.
*
* @return {@code true} if there may be other strands waiting to acquire
*/
public final boolean hasQueuedStrands() {
return head != tail;
}
/**
* Queries whether any strands have ever contended to acquire this
* synchronizer; that is if an acquire method has ever blocked.
*
*
In this implementation, this operation returns in
* constant time.
*
* @return {@code true} if there has ever been contention
*/
public final boolean hasContended() {
return head != null;
}
/**
* Returns the first (longest-waiting) strand in the queue, or
* {@code null} if no strands are currently queued.
*
*
In this implementation, this operation normally returns in
* constant time, but may iterate upon contention if other strands are
* concurrently modifying the queue.
*
* @return the first (longest-waiting) strand in the queue, or
* {@code null} if no strands are currently queued
*/
public final Strand getFirstQueuedStrand() {
// handle only fast path, else relay
return (head == tail) ? null : fullGetFirstQueuedStrand();
}
/**
* Version of getFirstQueuedStrand called when fastpath fails
*/
private Strand fullGetFirstQueuedStrand() {
/*
* The first node is normally head.next. Try to get its
* strand field, ensuring consistent reads: If strand
* field is nulled out or s.prev is no longer head, then
* some other strand(s) concurrently performed setHead in
* between some of our reads. We try this twice before
* resorting to traversal.
*/
Node h, s;
Strand st;
if (((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.strand) != null) ||
((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.strand) != null))
return st;
/*
* Head's next field might not have been set yet, or may have
* been unset after setHead. So we must check to see if tail
* is actually first node. If not, we continue on, safely
* traversing from tail back to head to find first,
* guaranteeing termination.
*/
Node t = tail;
Strand firstStrand = null;
while (t != null && t != head) {
Strand tt = t.strand;
if (tt != null)
firstStrand = tt;
t = t.prev;
}
return firstStrand;
}
/**
* Returns true if the given strand is currently queued.
*
*
This implementation traverses the queue to determine
* presence of the given strand.
*
* @param strand the strand
* @return {@code true} if the given strand is on the queue
* @throws NullPointerException if the strand is null
*/
public final boolean isQueued(Strand strand) {
if (strand == null)
throw new NullPointerException();
for (Node p = tail; p != null; p = p.prev)
if (p.strand == strand)
return true;
return false;
}
/**
* Returns {@code true} if the apparent first queued strand, if one
* exists, is waiting in exclusive mode. If this method returns
* {@code true}, and the current strand is attempting to acquire in
* shared mode (that is, this method is invoked from {@link
* #tryAcquireShared}) then it is guaranteed that the current strand
* is not the first queued strand. Used only as a heuristic in
* ReentrantReadWriteLock.
*/
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.strand != null;
}
/**
* Queries whether any strands have been waiting to acquire longer
* than the current strand.
*
*
An invocation of this method is equivalent to (but may be
* more efficient than):
*
{@code
* getFirstQueuedStrand() != Strand.currentStrand() &&
* hasQueuedStrands()}
*
* Note that because cancellations due to interrupts and
* timeouts may occur at any time, a {@code true} return does not
* guarantee that some other strand will acquire before the current
* strand. Likewise, it is possible for another strand to win a
* race to enqueue after this method has returned {@code false},
* due to the queue being empty.
*
*
This method is designed to be used by a fair synchronizer to
* avoid barging.
* Such a synchronizer's {@link #tryAcquire} method should return
* {@code false}, and its {@link #tryAcquireShared} method should
* return a negative value, if this method returns {@code true}
* (unless this is a reentrant acquire). For example, the {@code
* tryAcquire} method for a fair, reentrant, exclusive mode
* synchronizer might look like this:
*
*
{@code
* protected boolean tryAcquire(int arg) {
* if (isHeldExclusively()) {
* // A reentrant acquire; increment hold count
* return true;
* } else if (hasQueuedPredecessors()) {
* return false;
* } else {
* // try to acquire normally
* }
* }}
*
* @return {@code true} if there is a queued strand preceding the
* current strand, and {@code false} if the current strand
* is at the head of the queue or the queue is empty
* @since 1.7
*/
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// strand is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.strand != Strand.currentStrand());
}
// Instrumentation and monitoring methods
/**
* Returns an estimate of the number of strands waiting to
* acquire. The value is only an estimate because the number of
* strands may change dynamically while this method traverses
* internal data structures. This method is designed for use in
* monitoring system state, not for synchronization
* control.
*
* @return the estimated number of strands waiting to acquire
*/
public final int getQueueLength() {
int n = 0;
for (Node p = tail; p != null; p = p.prev) {
if (p.strand != null)
++n;
}
return n;
}
/**
* Returns a collection containing strands that may be waiting to
* acquire. Because the actual set of strands may change
* dynamically while constructing this result, the returned
* collection is only a best-effort estimate. The elements of the
* returned collection are in no particular order. This method is
* designed to facilitate construction of subclasses that provide
* more extensive monitoring facilities.
*
* @return the collection of strands
*/
public final Collection getQueuedStrands() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
Strand t = p.strand;
if (t != null)
list.add(t);
}
return list;
}
/**
* Returns a collection containing strands that may be waiting to
* acquire in exclusive mode. This has the same properties
* as {@link #getQueuedStrands} except that it only returns
* those strands waiting due to an exclusive acquire.
*
* @return the collection of strands
*/
public final Collection getExclusiveQueuedStrands() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (!p.isShared()) {
Strand t = p.strand;
if (t != null)
list.add(t);
}
}
return list;
}
/**
* Returns a collection containing strands that may be waiting to
* acquire in shared mode. This has the same properties
* as {@link #getQueuedStrands} except that it only returns
* those strands waiting due to a shared acquire.
*
* @return the collection of strands
*/
public final Collection getSharedQueuedStrands() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (p.isShared()) {
Strand t = p.strand;
if (t != null)
list.add(t);
}
}
return list;
}
/**
* Returns a string identifying this synchronizer, as well as its state.
* The state, in brackets, includes the String {@code "State ="}
* followed by the current value of {@link #getState}, and either
* {@code "nonempty"} or {@code "empty"} depending on whether the
* queue is empty.
*
* @return a string identifying this synchronizer, as well as its state
*/
@Override
public String toString() {
int s = getState();
String q = hasQueuedStrands() ? "non" : "";
return super.toString() +
"[State = " + s + ", " + q + "empty queue]";
}
// Internal support methods for Conditions
/**
* Returns true if a node, always one that was initially placed on
* a condition queue, is now waiting to reacquire on sync queue.
* @param node the node
* @return true if is reacquiring
*/
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true;
/*
* node.prev can be non-null, but not yet on queue because
* the CAS to place it on queue can fail. So we have to
* traverse from tail to make sure it actually made it. It
* will always be near the tail in calls to this method, and
* unless the CAS failed (which is unlikely), it will be
* there, so we hardly ever traverse much.
*/
return findNodeFromTail(node);
}
/**
* Returns true if node is on sync queue by searching backwards from tail.
* Called only when needed by isOnSyncQueue.
* @return true if present
*/
private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
/**
* Transfers a node from a condition queue onto sync queue.
* Returns true if successful.
* @param node the node
* @return true if successfully transferred (else the node was
* cancelled before signal)
*/
final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
/*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that strand is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
Strand.unpark(node.strand);
return true;
}
/**
* Transfers node, if necessary, to sync queue after a cancelled wait.
* Returns true if strand was cancelled before being signalled.
*
* @param node the node
* @return true if cancelled before the node was signalled
*/
final boolean transferAfterCancelledWait(Node node) throws SuspendExecution {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
enq(node);
return true;
}
/*
* If we lost out to a signal(), then we can't proceed
* until it finishes its enq(). Cancelling during an
* incomplete transfer is both rare and transient, so just
* spin.
*/
while (!isOnSyncQueue(node))
Strand.yield();
return false;
}
/**
* Invokes release with current state value; returns saved state.
* Cancels node and throws exception on failure.
* @param node the condition node for this wait
* @return previous sync state
*/
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
// Instrumentation methods for conditions
/**
* Queries whether the given ConditionObject
* uses this synchronizer as its lock.
*
* @param condition the condition
* @return {@code true} if owned
* @throws NullPointerException if the condition is null
*/
public final boolean owns(ConditionObject condition) {
return condition.isOwnedBy(this);
}
/**
* Queries whether any strands are waiting on the given condition
* associated with this synchronizer. Note that because timeouts
* and interrupts may occur at any time, a {@code true} return
* does not guarantee that a future {@code signal} will awaken
* any strands. This method is designed primarily for use in
* monitoring of the system state.
*
* @param condition the condition
* @return {@code true} if there are any waiting strands
* @throws IllegalMonitorStateException if exclusive synchronization
* is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this synchronizer
* @throws NullPointerException if the condition is null
*/
public final boolean hasWaiters(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.hasWaiters();
}
/**
* Returns an estimate of the number of strands waiting on the
* given condition associated with this synchronizer. Note that
* because timeouts and interrupts may occur at any time, the
* estimate serves only as an upper bound on the actual number of
* waiters. This method is designed for use in monitoring of the
* system state, not for synchronization control.
*
* @param condition the condition
* @return the estimated number of waiting strands
* @throws IllegalMonitorStateException if exclusive synchronization
* is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this synchronizer
* @throws NullPointerException if the condition is null
*/
public final int getWaitQueueLength(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitQueueLength();
}
/**
* Returns a collection containing those strands that may be
* waiting on the given condition associated with this
* synchronizer. Because the actual set of strands may change
* dynamically while constructing this result, the returned
* collection is only a best-effort estimate. The elements of the
* returned collection are in no particular order.
*
* @param condition the condition
* @return the collection of strands
* @throws IllegalMonitorStateException if exclusive synchronization
* is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this synchronizer
* @throws NullPointerException if the condition is null
*/
public final Collection getWaitingStrands(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitingStrands();
}
/**
* Condition implementation for a {@link
* AbstractQueuedSynchronizer} serving as the basis of a {@link
* Lock} implementation.
*
* Method documentation for this class describes mechanics,
* not behavioral specifications from the point of view of Lock
* and Condition users. Exported versions of this class will in
* general need to be accompanied by documentation describing
* condition semantics that rely on those of the associated
* {@code AbstractQueuedSynchronizer}.
*
*
This class is Serializable, but all fields are transient,
* so deserialized conditions have no waiters.
*/
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
/**
* Creates a new {@code ConditionObject} instance.
*/
public ConditionObject() { }
// Internal methods
/**
* Adds a new waiter to wait queue.
* @return its new wait node
*/
private Node addConditionWaiter() {
Node t = lastWaiter;
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Strand.currentStrand(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
/**
* Removes and transfers nodes until hit non-cancelled one or
* null. Split out from signal in part to encourage compilers
* to inline the case of no waiters.
* @param first (non-null) the first node on condition queue
*/
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
/**
* Removes and transfers all nodes.
* @param first (non-null) the first node on condition queue
*/
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
/**
* Unlinks cancelled waiter nodes from condition queue.
* Called only while holding lock. This is called when
* cancellation occurred during condition wait, and upon
* insertion of a new waiter when lastWaiter is seen to have
* been cancelled. This method is needed to avoid garbage
* retention in the absence of signals. So even though it may
* require a full traversal, it comes into play only when
* timeouts or cancellations occur in the absence of
* signals. It traverses all nodes rather than stopping at a
* particular target to unlink all pointers to garbage nodes
* without requiring many re-traversals during cancellation
* storms.
*/
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}
// public methods
/**
* Moves the longest-waiting strand, if one exists, from the
* wait queue for this condition to the wait queue for the
* owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
@Override
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
/**
* Moves all strands from the wait queue for this condition to
* the wait queue for the owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
@Override
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
/**
* Implements uninterruptible condition wait.
*
* - Save lock state returned by {@link #getState}.
*
- Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
*
- Block until signalled.
*
- Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
*
*/
@Suspendable
public final void awaitUninterruptibly() {
try {
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) {
Strand.park(this);
if (Strand.interrupted())
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/*
* For interruptible waits, we need to track whether to throw
* InterruptedException, if interrupted while blocked on
* condition, versus reinterrupt current strand, if
* interrupted while blocked waiting to re-acquire.
*/
/** Mode meaning to reinterrupt on exit from wait */
private static final int REINTERRUPT = 1;
/** Mode meaning to throw InterruptedException on exit from wait */
private static final int THROW_IE = -1;
/**
* Checks for interrupt, returning THROW_IE if interrupted
* before signalled, REINTERRUPT if after signalled, or
* 0 if not interrupted.
*/
private int checkInterruptWhileWaiting(Node node) throws SuspendExecution {
return Strand.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
/**
* Throws InterruptedException, reinterrupts current strand, or
* does nothing, depending on mode.
*/
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
/**
* Implements interruptible condition wait.
*
* - If current strand is interrupted, throw InterruptedException.
*
- Save lock state returned by {@link #getState}.
*
- Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
*
- Block until signalled or interrupted.
*
- Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
*
- If interrupted while blocked in step 4, throw InterruptedException.
*
*/
@Suspendable
public final void await() throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
Strand.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
} catch (SuspendExecution e) {
throw new AssertionError(e);
}
}
/**
* Implements timed condition wait.
*
* - If current strand is interrupted, throw InterruptedException.
*
- Save lock state returned by {@link #getState}.
*
- Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
*
- Block until signalled, interrupted, or timed out.
*
- Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
*
- If interrupted while blocked in step 4, throw InterruptedException.
*
*/
@Suspendable
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
try {
if (Strand.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
Strand.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Implements absolute timed condition wait.
*
* - If current strand is interrupted, throw InterruptedException.
*
- Save lock state returned by {@link #getState}.
*
- Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
*
- Block until signalled, interrupted, or timed out.
*
- Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
*
- If interrupted while blocked in step 4, throw InterruptedException.
*
- If timed out while blocked in step 4, return false, else true.
*
*/
@Suspendable
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
try {
long abstime = deadline.getTime();
if (Strand.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
Strand.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
/**
* Implements timed condition wait.
*
* - If current strand is interrupted, throw InterruptedException.
*
- Save lock state returned by {@link #getState}.
*
- Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
*
- Block until signalled, interrupted, or timed out.
*
- Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
*
- If interrupted while blocked in step 4, throw InterruptedException.
*
- If timed out while blocked in step 4, return false, else true.
*
*/
@Suspendable
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
try {
long nanosTimeout = unit.toNanos(time);
if (Strand.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
Strand.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
} catch (SuspendExecution e) {
throw new AssertionError();
}
}
// support for instrumentation
/**
* Returns true if this condition was created by the given
* synchronization object.
*
* @return {@code true} if owned
*/
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
}
/**
* Queries whether any strands are waiting on this condition.
* Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
*
* @return {@code true} if there are any waiting strands
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}
/**
* Returns an estimate of the number of strands waiting on
* this condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
*
* @return the estimated number of waiting strands
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}
/**
* Returns a collection containing those strands that may be
* waiting on this Condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitingStrands(ConditionObject)}.
*
* @return the collection of strands
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final Collection getWaitingStrands() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList list = new ArrayList();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Strand t = w.strand;
if (t != null)
list.add(t);
}
}
return list;
}
}
private static final VarHandle STATE;
private static final VarHandle HEAD;
private static final VarHandle TAIL;
private static final VarHandle WAIT_STATUS;
private static final VarHandle NEXT;
static {
try {
MethodHandles.Lookup l = MethodHandles.lookup();
STATE = l.findVarHandle(AbstractQueuedSynchronizer.class, "state", int.class);
HEAD = l.findVarHandle(AbstractQueuedSynchronizer.class, "head", Node.class);
TAIL = l.findVarHandle(AbstractQueuedSynchronizer.class, "tail", Node.class);
WAIT_STATUS = l.findVarHandle(Node.class, "waitStatus", int.class);
NEXT = l.findVarHandle(Node.class, "next", Node.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
}
/**
* CAS head field. Used only by enq.
*/
private final boolean compareAndSetHead(Node update) {
return HEAD.compareAndSet(this, null, update);
}
/**
* CAS tail field. Used only by enq.
*/
private final boolean compareAndSetTail(Node expect, Node update) {
return TAIL.compareAndSet(this, expect, update);
}
/**
* CAS waitStatus field of a node.
*/
private static final boolean compareAndSetWaitStatus(Node node,
int expect,
int update) {
return WAIT_STATUS.compareAndSet(node, expect, update);
}
/**
* CAS next field of a node.
*/
private static final boolean compareAndSetNext(Node node,
Node expect,
Node update) {
return NEXT.compareAndSet(node, expect, update);
}
// /**
// * Setup to support compareAndSet. We need to natively implement
// * this here: For the sake of permitting future enhancements, we
// * cannot explicitly subclass AtomicInteger, which would be
// * efficient and useful otherwise. So, as the lesser of evils, we
// * natively implement using hotspot intrinsics API. And while we
// * are at it, we do the same for other CASable fields (which could
// * otherwise be done with atomic field updaters).
// */
// private static final Unsafe unsafe = UtilUnsafe.getUnsafe();
// private static final long stateOffset;
// private static final long headOffset;
// private static final long tailOffset;
// private static final long waitStatusOffset;
// private static final long nextOffset;
//
// static {
// try {
// stateOffset = unsafe.objectFieldOffset
// (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
// headOffset = unsafe.objectFieldOffset
// (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
// tailOffset = unsafe.objectFieldOffset
// (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
// waitStatusOffset = unsafe.objectFieldOffset
// (Node.class.getDeclaredField("waitStatus"));
// nextOffset = unsafe.objectFieldOffset
// (Node.class.getDeclaredField("next"));
//
// } catch (Exception ex) { throw new Error(ex); }
// }
//
// /**
// * CAS head field. Used only by enq.
// */
// private final boolean compareAndSetHead(Node update) {
// return unsafe.compareAndSwapObject(this, headOffset, null, update);
// }
//
// /**
// * CAS tail field. Used only by enq.
// */
// private final boolean compareAndSetTail(Node expect, Node update) {
// return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
// }
//
// /**
// * CAS waitStatus field of a node.
// */
// private static final boolean compareAndSetWaitStatus(Node node,
// int expect,
// int update) {
// return unsafe.compareAndSwapInt(node, waitStatusOffset,
// expect, update);
// }
//
// /**
// * CAS next field of a node.
// */
// private static final boolean compareAndSetNext(Node node,
// Node expect,
// Node update) {
// return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
// }
}