co.paralleluniverse.strands.concurrent.ReentrantReadWriteLock Maven / Gradle / Ivy
/*
* Quasar: lightweight strands and actors for the JVM.
* Copyright (c) 2013-2014, Parallel Universe Software Co. All rights reserved.
*
* This program and the accompanying materials are dual-licensed under
* either the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation
*
* or (per the licensee's choosing)
*
* under the terms of the GNU Lesser General Public License version 3.0
* as published by the Free Software Foundation.
*/
/*
* Based on code:
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package co.paralleluniverse.strands.concurrent;
import co.paralleluniverse.fibers.SuspendExecution;
import co.paralleluniverse.fibers.Suspendable;
import co.paralleluniverse.strands.Strand;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import java.util.*;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
/**
* An implementation of {@link ReadWriteLock} supporting similar
* semantics to {@link ReentrantLock}.
* This class has the following properties:
*
*
* - Acquisition order
*
*
This class does not impose a reader or writer preference
* ordering for lock access. However, it does support an optional
* fairness policy.
*
*
* - Non-fair mode (default)
*
- When constructed as non-fair (the default), the order of entry
* to the read and write lock is unspecified, subject to reentrancy
* constraints. A nonfair lock that is continuously contended may
* indefinitely postpone one or more reader or writer strands, but
* will normally have higher throughput than a fair lock.
*
*
- Fair mode
*
- When constructed as fair, strands contend for entry using an
* approximately arrival-order policy. When the currently held lock
* is released either the longest-waiting single writer strand will
* be assigned the write lock, or if there is a group of reader strands
* waiting longer than all waiting writer strands, that group will be
* assigned the read lock.
*
*
A strand that tries to acquire a fair read lock (non-reentrantly)
* will block if either the write lock is held, or there is a waiting
* writer strand. The strand will not acquire the read lock until
* after the oldest currently waiting writer strand has acquired and
* released the write lock. Of course, if a waiting writer abandons
* its wait, leaving one or more reader strands as the longest waiters
* in the queue with the write lock free, then those readers will be
* assigned the read lock.
*
*
A strand that tries to acquire a fair write lock (non-reentrantly)
* will block unless both the read lock and write lock are free (which
* implies there are no waiting strands). (Note that the non-blocking
* {@link ReadLock#tryLock()} and {@link WriteLock#tryLock()} methods
* do not honor this fair setting and will acquire the lock if it is
* possible, regardless of waiting strands.)
*
*
*
* - Reentrancy
*
*
This lock allows both readers and writers to reacquire read or
* write locks in the style of a {@link ReentrantLock}. Non-reentrant
* readers are not allowed until all write locks held by the writing
* strand have been released.
*
*
Additionally, a writer can acquire the read lock, but not
* vice-versa. Among other applications, reentrancy can be useful
* when write locks are held during calls or callbacks to methods that
* perform reads under read locks. If a reader tries to acquire the
* write lock it will never succeed.
*
*
- Lock downgrading
*
Reentrancy also allows downgrading from the write lock to a read lock,
* by acquiring the write lock, then the read lock and then releasing the
* write lock. However, upgrading from a read lock to the write lock is
* not possible.
*
*
- Interruption of lock acquisition
*
The read lock and write lock both support interruption during lock
* acquisition.
*
*
- {@link Condition} support
*
The write lock provides a {@link Condition} implementation that
* behaves in the same way, with respect to the write lock, as the
* {@link Condition} implementation provided by
* {@link ReentrantLock#newCondition} does for {@link ReentrantLock}.
* This {@link Condition} can, of course, only be used with the write lock.
*
*
The read lock does not support a {@link Condition} and
* {@code readLock().newCondition()} throws
* {@code UnsupportedOperationException}.
*
*
- Instrumentation
*
This class supports methods to determine whether locks
* are held or contended. These methods are designed for monitoring
* system state, not for synchronization control.
*
*
* Serialization of this class behaves in the same way as built-in
* locks: a deserialized lock is in the unlocked state, regardless of
* its state when serialized.
*
*
Sample usages. Here is a code sketch showing how to perform
* lock downgrading after updating a cache (exception handling is
* particularly tricky when handling multiple locks in a non-nested
* fashion):
*
*
{@code
* class CachedData {
* Object data;
* volatile boolean cacheValid;
* final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
*
* void processCachedData() {
* rwl.readLock().lock();
* if (!cacheValid) {
* // Must release read lock before acquiring write lock
* rwl.readLock().unlock();
* rwl.writeLock().lock();
* try {
* // Recheck state because another strand might have
* // acquired write lock and changed state before we did.
* if (!cacheValid) {
* data = ...
* cacheValid = true;
* }
* // Downgrade by acquiring read lock before releasing write lock
* rwl.readLock().lock();
* } finally {
* rwl.writeLock().unlock(); // Unlock write, still hold read
* }
* }
*
* try {
* use(data);
* } finally {
* rwl.readLock().unlock();
* }
* }
* }}
*
* ReentrantReadWriteLocks can be used to improve concurrency in some
* uses of some kinds of Collections. This is typically worthwhile
* only when the collections are expected to be large, accessed by
* more reader strands than writer strands, and entail operations with
* overhead that outweighs synchronization overhead. For example, here
* is a class using a TreeMap that is expected to be large and
* concurrently accessed.
*
* {@code
* class RWDictionary {
* private final Map m = new TreeMap();
* private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
* private final Lock r = rwl.readLock();
* private final Lock w = rwl.writeLock();
*
* public Data get(String key) {
* r.lock();
* try { return m.get(key); }
* finally { r.unlock(); }
* }
* public String[] allKeys() {
* r.lock();
* try { return m.keySet().toArray(); }
* finally { r.unlock(); }
* }
* public Data put(String key, Data value) {
* w.lock();
* try { return m.put(key, value); }
* finally { w.unlock(); }
* }
* public void clear() {
* w.lock();
* try { m.clear(); }
* finally { w.unlock(); }
* }
* }}
*
* Implementation Notes
*
* This lock supports a maximum of 65535 recursive write locks
* and 65535 read locks. Attempts to exceed these limits result in
* {@link Error} throws from locking methods.
*
* @since 1.5
* @author Doug Lea
*
*/
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
private static final long serialVersionUID = -6992448646407690164L;
/** Inner class providing readlock */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics */
final Sync sync;
/**
* Creates a new {@code ReentrantReadWriteLock} with
* default (nonfair) ordering properties.
*/
public ReentrantReadWriteLock() {
this(false);
}
/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
/**
* Synchronization implementation for ReentrantReadWriteLock.
* Subclassed into fair and nonfair versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
/*
* Read vs write count extraction constants and functions.
* Lock state is logically divided into two unsigned shorts:
* The lower one representing the exclusive (writer) lock hold count,
* and the upper the shared (reader) hold count.
*/
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** Returns the number of shared holds represented in count */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** Returns the number of exclusive holds represented in count */
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/**
* A counter for per-strand read hold counts.
* Maintained as a StrandLocal; cached in cachedHoldCounter
*/
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = Strand.currentStrand().getId();
}
/**
* StrandLocal subclass. Easiest to explicitly define for sake
* of deserialization mechanics.
*/
static final class StrandLocalHoldCounter
extends ThreadLocal {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
/**
* The number of reentrant read locks held by current strand.
* Initialized only in constructor and readObject.
* Removed whenever a strand's read hold count drops to 0.
*/
private transient StrandLocalHoldCounter readHolds;
/**
* The hold count of the last strand to successfully acquire
* readLock. This saves StrandLocal lookup in the common case
* where the next strand to release is the last one to
* acquire. This is non-volatile since it is just used
* as a heuristic, and would be great for strands to cache.
*
* Can outlive the Strand for which it is caching the read
* hold count, but avoids garbage retention by not retaining a
* reference to the Strand.
*
*
Accessed via a benign data race; relies on the memory
* model's final field and out-of-thin-air guarantees.
*/
private transient HoldCounter cachedHoldCounter;
/**
* firstReader is the first strand to have acquired the read lock.
* firstReaderHoldCount is firstReader's hold count.
*
*
More precisely, firstReader is the unique strand that last
* changed the shared count from 0 to 1, and has not released the
* read lock since then; null if there is no such strand.
*
*
Cannot cause garbage retention unless the strand terminated
* without relinquishing its read locks, since tryReleaseShared
* sets it to null.
*
*
Accessed via a benign data race; relies on the memory
* model's out-of-thin-air guarantees for references.
*
*
This allows tracking of read holds for uncontended read
* locks to be very cheap.
*/
private transient Strand firstReader = null;
private transient int firstReaderHoldCount;
Sync() {
readHolds = new StrandLocalHoldCounter();
setState(getState()); // ensures visibility of readHolds
}
/*
* Acquires and releases use the same code for fair and
* nonfair locks, but differ in whether/how they allow barging
* when queues are non-empty.
*/
/**
* Returns true if the current strand, when trying to acquire
* the read lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting strands.
*/
abstract boolean readerShouldBlock();
/**
* Returns true if the current strand, when trying to acquire
* the write lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting strands.
*/
abstract boolean writerShouldBlock();
/*
* Note that tryRelease and tryAcquire can be called by
* Conditions. So it is possible that their arguments contain
* both read and write holds that are all released during a
* condition wait and re-established in tryAcquire.
*/
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerStrand(null);
setState(nextc);
return free;
}
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different strand, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this strand is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Strand current = Strand.currentStrand();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
if (w == 0 || current != getExclusiveOwnerStrand())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerStrand(current);
return true;
}
protected final boolean tryReleaseShared(int unused) {
Strand current = Strand.currentStrand();
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
private IllegalMonitorStateException unmatchedUnlockException() {
return new IllegalMonitorStateException(
"attempt to unlock read lock, not locked by current strand");
}
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another strand, fail.
* 2. Otherwise, this strand is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because strand
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
*/
Strand current = Strand.currentStrand();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerStrand() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}
/**
* Full version of acquire for reads, that handles CAS misses
* and reentrant reads not dealt with in tryAcquireShared.
*/
final int fullTryAcquireShared(Strand current) {
/*
* This code is in part redundant with that in
* tryAcquireShared but is simpler overall by not
* complicating tryAcquireShared with interactions between
* retries and lazily reading hold counts.
*/
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerStrand() != current)
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
} else if (readerShouldBlock()) {
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
/**
* Performs tryLock for write, enabling barging in both modes.
* This is identical in effect to tryAcquire except for lack
* of calls to writerShouldBlock.
*/
final boolean tryWriteLock() {
Strand current = Strand.currentStrand();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerStrand())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerStrand(current);
return true;
}
/**
* Performs tryLock for read, enabling barging in both modes.
* This is identical in effect to tryAcquireShared except for
* lack of calls to readerShouldBlock.
*/
final boolean tryReadLock() {
Strand current = Strand.currentStrand();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerStrand() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current strand is owner
return getExclusiveOwnerStrand() == Strand.currentStrand();
}
// Methods relayed to outer class
final ConditionObject newCondition() {
return new ConditionObject();
}
final Strand getOwner() {
// Must read state before owner to ensure memory consistency
return ((exclusiveCount(getState()) == 0) ?
null :
getExclusiveOwnerStrand());
}
final int getReadLockCount() {
return sharedCount(getState());
}
final boolean isWriteLocked() {
return exclusiveCount(getState()) != 0;
}
final int getWriteHoldCount() {
return isHeldExclusively() ? exclusiveCount(getState()) : 0;
}
final int getReadHoldCount() {
if (getReadLockCount() == 0)
return 0;
Strand current = Strand.currentStrand();
if (firstReader == current)
return firstReaderHoldCount;
HoldCounter rh = cachedHoldCounter;
if (rh != null && rh.tid == current.getId())
return rh.count;
int count = readHolds.get().count;
if (count == 0) readHolds.remove();
return count;
}
/**
* Reconstitute this lock instance from a stream
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
readHolds = new StrandLocalHoldCounter();
setState(0); // reset to unlocked state
}
final int getCount() { return getState(); }
}
/**
* Nonfair version of Sync
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
/* As a heuristic to avoid indefinite writer starvation,
* block if the strand that momentarily appears to be head
* of queue, if one exists, is a waiting writer. This is
* only a probabilistic effect since a new reader will not
* block if there is a waiting writer behind other enabled
* readers that have not yet drained from the queue.
*/
return apparentlyFirstQueuedIsExclusive();
}
}
/**
* Fair version of Sync
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
/**
* The lock returned by method {@link ReentrantReadWriteLock#readLock}.
*/
public static class ReadLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = -5992448646407690164L;
private final Sync sync;
/**
* Constructor for use by subclasses
*
* @param lock the outer lock object
* @throws NullPointerException if the lock is null
*/
protected ReadLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
/**
* Acquires the read lock.
*
*
Acquires the read lock if the write lock is not held by
* another strand and returns immediately.
*
*
If the write lock is held by another strand then
* the current strand becomes disabled for strand scheduling
* purposes and lies dormant until the read lock has been acquired.
*/
@Suspendable
public void lock() {
sync.acquireShared(1);
}
/**
* Acquires the read lock unless the current strand is
* {@linkplain Strand#interrupt interrupted}.
*
*
Acquires the read lock if the write lock is not held
* by another strand and returns immediately.
*
*
If the write lock is held by another strand then the
* current strand becomes disabled for strand scheduling
* purposes and lies dormant until one of two things happens:
*
*
*
* - The read lock is acquired by the current strand; or
*
*
- Some other strand {@linkplain Strand#interrupt interrupts}
* the current strand.
*
*
*
* If the current strand:
*
*
*
* - has its interrupted status set on entry to this method; or
*
*
- is {@linkplain Strand#interrupt interrupted} while
* acquiring the read lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* strand's interrupted status is cleared.
*
* In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock.
*
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public void lockInterruptibly() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* Acquires the read lock only if the write lock is not held by
* another strand at the time of invocation.
*
*
Acquires the read lock if the write lock is not held by
* another strand and returns immediately with the value
* {@code true}. Even when this lock has been set to use a
* fair ordering policy, a call to {@code tryLock()}
* will immediately acquire the read lock if it is
* available, whether or not other strands are currently
* waiting for the read lock. This "barging" behavior
* can be useful in certain circumstances, even though it
* breaks fairness. If you want to honor the fairness setting
* for this lock, then use {@link #tryLock(long, TimeUnit)
* tryLock(0, TimeUnit.SECONDS) } which is almost equivalent
* (it also detects interruption).
*
*
If the write lock is held by another strand then
* this method will return immediately with the value
* {@code false}.
*
* @return {@code true} if the read lock was acquired
*/
public boolean tryLock() {
return sync.tryReadLock();
}
/**
* Acquires the read lock if the write lock is not held by
* another strand within the given waiting time and the
* current strand has not been {@linkplain Strand#interrupt
* interrupted}.
*
*
Acquires the read lock if the write lock is not held by
* another strand and returns immediately with the value
* {@code true}. If this lock has been set to use a fair
* ordering policy then an available lock will not be
* acquired if any other strands are waiting for the
* lock. This is in contrast to the {@link #tryLock()}
* method. If you want a timed {@code tryLock} that does
* permit barging on a fair lock then combine the timed and
* un-timed forms together:
*
*
if (lock.tryLock() || lock.tryLock(timeout, unit) ) { ... }
*
*
* If the write lock is held by another strand then the
* current strand becomes disabled for strand scheduling
* purposes and lies dormant until one of three things happens:
*
*
*
* - The read lock is acquired by the current strand; or
*
*
- Some other strand {@linkplain Strand#interrupt interrupts}
* the current strand; or
*
*
- The specified waiting time elapses.
*
*
*
* If the read lock is acquired then the value {@code true} is
* returned.
*
*
If the current strand:
*
*
*
* - has its interrupted status set on entry to this method; or
*
*
- is {@linkplain Strand#interrupt interrupted} while
* acquiring the read lock,
*
*
then {@link InterruptedException} is thrown and the
* current strand's interrupted status is cleared.
*
* If the specified waiting time elapses then the value
* {@code false} is returned. If the time is less than or
* equal to zero, the method will not wait at all.
*
*
In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock, and over reporting the elapse of the waiting time.
*
* @param timeout the time to wait for the read lock
* @param unit the time unit of the timeout argument
* @return {@code true} if the read lock was acquired
* @throws InterruptedException if the current strand is interrupted
* @throws NullPointerException if the time unit is null
*
*/
@Suspendable
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
/**
* Attempts to release this lock.
*
*
If the number of readers is now zero then the lock
* is made available for write lock attempts.
*/
public void unlock() {
sync.releaseShared(1);
}
/**
* Throws {@code UnsupportedOperationException} because
* {@code ReadLocks} do not support conditions.
*
* @throws UnsupportedOperationException always
*/
public Condition newCondition() {
throw new UnsupportedOperationException();
}
/**
* Returns a string identifying this lock, as well as its lock state.
* The state, in brackets, includes the String {@code "Read locks ="}
* followed by the number of held read locks.
*
* @return a string identifying this lock, as well as its lock state
*/
public String toString() {
int r = sync.getReadLockCount();
return super.toString() +
"[Read locks = " + r + "]";
}
}
/**
* The lock returned by method {@link ReentrantReadWriteLock#writeLock}.
*/
public static class WriteLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = -4992448646407690164L;
private final Sync sync;
/**
* Constructor for use by subclasses
*
* @param lock the outer lock object
* @throws NullPointerException if the lock is null
*/
protected WriteLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
/**
* Acquires the write lock.
*
*
Acquires the write lock if neither the read nor write lock
* are held by another strand
* and returns immediately, setting the write lock hold count to
* one.
*
*
If the current strand already holds the write lock then the
* hold count is incremented by one and the method returns
* immediately.
*
*
If the lock is held by another strand then the current
* strand becomes disabled for strand scheduling purposes and
* lies dormant until the write lock has been acquired, at which
* time the write lock hold count is set to one.
*/
@Suspendable
public void lock() {
sync.acquire(1);
}
/**
* Acquires the write lock unless the current strand is
* {@linkplain Strand#interrupt interrupted}.
*
*
Acquires the write lock if neither the read nor write lock
* are held by another strand
* and returns immediately, setting the write lock hold count to
* one.
*
*
If the current strand already holds this lock then the
* hold count is incremented by one and the method returns
* immediately.
*
*
If the lock is held by another strand then the current
* strand becomes disabled for strand scheduling purposes and
* lies dormant until one of two things happens:
*
*
*
* - The write lock is acquired by the current strand; or
*
*
- Some other strand {@linkplain Strand#interrupt interrupts}
* the current strand.
*
*
*
* If the write lock is acquired by the current strand then the
* lock hold count is set to one.
*
*
If the current strand:
*
*
*
* - has its interrupted status set on entry to this method;
* or
*
*
- is {@linkplain Strand#interrupt interrupted} while
* acquiring the write lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* strand's interrupted status is cleared.
*
* In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock.
*
* @throws InterruptedException if the current strand is interrupted
*/
@Suspendable
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
/**
* Acquires the write lock only if it is not held by another strand
* at the time of invocation.
*
*
Acquires the write lock if neither the read nor write lock
* are held by another strand
* and returns immediately with the value {@code true},
* setting the write lock hold count to one. Even when this lock has
* been set to use a fair ordering policy, a call to
* {@code tryLock()} will immediately acquire the
* lock if it is available, whether or not other strands are
* currently waiting for the write lock. This "barging"
* behavior can be useful in certain circumstances, even
* though it breaks fairness. If you want to honor the
* fairness setting for this lock, then use {@link
* #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) }
* which is almost equivalent (it also detects interruption).
*
*
If the current strand already holds this lock then the
* hold count is incremented by one and the method returns
* {@code true}.
*
*
If the lock is held by another strand then this method
* will return immediately with the value {@code false}.
*
* @return {@code true} if the lock was free and was acquired
* by the current strand, or the write lock was already held
* by the current strand; and {@code false} otherwise.
*/
public boolean tryLock( ) {
return sync.tryWriteLock();
}
/**
* Acquires the write lock if it is not held by another strand
* within the given waiting time and the current strand has
* not been {@linkplain Strand#interrupt interrupted}.
*
*
Acquires the write lock if neither the read nor write lock
* are held by another strand
* and returns immediately with the value {@code true},
* setting the write lock hold count to one. If this lock has been
* set to use a fair ordering policy then an available lock
* will not be acquired if any other strands are
* waiting for the write lock. This is in contrast to the {@link
* #tryLock()} method. If you want a timed {@code tryLock}
* that does permit barging on a fair lock then combine the
* timed and un-timed forms together:
*
*
if (lock.tryLock() || lock.tryLock(timeout, unit) ) { ... }
*
*
* If the current strand already holds this lock then the
* hold count is incremented by one and the method returns
* {@code true}.
*
*
If the lock is held by another strand then the current
* strand becomes disabled for strand scheduling purposes and
* lies dormant until one of three things happens:
*
*
*
* - The write lock is acquired by the current strand; or
*
*
- Some other strand {@linkplain Strand#interrupt interrupts}
* the current strand; or
*
*
- The specified waiting time elapses
*
*
*
* If the write lock is acquired then the value {@code true} is
* returned and the write lock hold count is set to one.
*
*
If the current strand:
*
*
*
* - has its interrupted status set on entry to this method;
* or
*
*
- is {@linkplain Strand#interrupt interrupted} while
* acquiring the write lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* strand's interrupted status is cleared.
*
* If the specified waiting time elapses then the value
* {@code false} is returned. If the time is less than or
* equal to zero, the method will not wait at all.
*
*
In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock, and over reporting the elapse of the waiting time.
*
* @param timeout the time to wait for the write lock
* @param unit the time unit of the timeout argument
*
* @return {@code true} if the lock was free and was acquired
* by the current strand, or the write lock was already held by the
* current strand; and {@code false} if the waiting time
* elapsed before the lock could be acquired.
*
* @throws InterruptedException if the current strand is interrupted
* @throws NullPointerException if the time unit is null
*
*/
@Suspendable
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
/**
* Attempts to release this lock.
*
*
If the current strand is the holder of this lock then
* the hold count is decremented. If the hold count is now
* zero then the lock is released. If the current strand is
* not the holder of this lock then {@link
* IllegalMonitorStateException} is thrown.
*
* @throws IllegalMonitorStateException if the current strand does not
* hold this lock.
*/
public void unlock() {
sync.release(1);
}
/**
* Returns a {@link Condition} instance for use with this
* {@link Lock} instance.
*
The returned {@link Condition} instance supports the same
* usages as do the {@link Object} monitor methods ({@link
* Object#wait() wait}, {@link Object#notify notify}, and {@link
* Object#notifyAll notifyAll}) when used with the built-in
* monitor lock.
*
*
*
* - If this write lock is not held when any {@link
* Condition} method is called then an {@link
* IllegalMonitorStateException} is thrown. (Read locks are
* held independently of write locks, so are not checked or
* affected. However it is essentially always an error to
* invoke a condition waiting method when the current strand
* has also acquired read locks, since other strands that
* could unblock it will not be able to acquire the write
* lock.)
*
*
- When the condition {@linkplain Condition#await() waiting}
* methods are called the write lock is released and, before
* they return, the write lock is reacquired and the lock hold
* count restored to what it was when the method was called.
*
*
- If a strand is {@linkplain Strand#interrupt interrupted} while
* waiting then the wait will terminate, an {@link
* InterruptedException} will be thrown, and the strand's
* interrupted status will be cleared.
*
*
- Waiting strands are signalled in FIFO order.
*
*
- The ordering of lock reacquisition for strands returning
* from waiting methods is the same as for strands initially
* acquiring the lock, which is in the default case not specified,
* but for fair locks favors those strands that have been
* waiting the longest.
*
*
*
* @return the Condition object
*/
public Condition newCondition() {
return sync.newCondition();
}
/**
* Returns a string identifying this lock, as well as its lock
* state. The state, in brackets includes either the String
* {@code "Unlocked"} or the String {@code "Locked by"}
* followed by the {@linkplain Strand#getName name} of the owning strand.
*
* @return a string identifying this lock, as well as its lock state
*/
public String toString() {
Strand o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by strand " + o.getName() + "]");
}
/**
* Queries if this write lock is held by the current strand.
* Identical in effect to {@link
* ReentrantReadWriteLock#isWriteLockedByCurrentStrand}.
*
* @return {@code true} if the current strand holds this lock and
* {@code false} otherwise
* @since 1.6
*/
public boolean isHeldByCurrentStrand() {
return sync.isHeldExclusively();
}
/**
* Queries the number of holds on this write lock by the current
* strand. A strand has a hold on a lock for each lock action
* that is not matched by an unlock action. Identical in effect
* to {@link ReentrantReadWriteLock#getWriteHoldCount}.
*
* @return the number of holds on this lock by the current strand,
* or zero if this lock is not held by the current strand
* @since 1.6
*/
public int getHoldCount() {
return sync.getWriteHoldCount();
}
}
// Instrumentation and status
/**
* Returns {@code true} if this lock has fairness set true.
*
* @return {@code true} if this lock has fairness set true
*/
public final boolean isFair() {
return sync instanceof FairSync;
}
/**
* Returns the strand that currently owns the write lock, or
* {@code null} if not owned. When this method is called by a
* strand that is not the owner, the return value reflects a
* best-effort approximation of current lock status. For example,
* the owner may be momentarily {@code null} even if there are
* strands trying to acquire the lock but have not yet done so.
* This method is designed to facilitate construction of
* subclasses that provide more extensive lock monitoring
* facilities.
*
* @return the owner, or {@code null} if not owned
*/
protected Strand getOwner() {
return sync.getOwner();
}
/**
* Queries the number of read locks held for this lock. This
* method is designed for use in monitoring system state, not for
* synchronization control.
* @return the number of read locks held.
*/
public int getReadLockCount() {
return sync.getReadLockCount();
}
/**
* Queries if the write lock is held by any strand. This method is
* designed for use in monitoring system state, not for
* synchronization control.
*
* @return {@code true} if any strand holds the write lock and
* {@code false} otherwise
*/
public boolean isWriteLocked() {
return sync.isWriteLocked();
}
/**
* Queries if the write lock is held by the current strand.
*
* @return {@code true} if the current strand holds the write lock and
* {@code false} otherwise
*/
public boolean isWriteLockedByCurrentStrand() {
return sync.isHeldExclusively();
}
/**
* Queries the number of reentrant write holds on this lock by the
* current strand. A writer strand has a hold on a lock for
* each lock action that is not matched by an unlock action.
*
* @return the number of holds on the write lock by the current strand,
* or zero if the write lock is not held by the current strand
*/
public int getWriteHoldCount() {
return sync.getWriteHoldCount();
}
/**
* Queries the number of reentrant read holds on this lock by the
* current strand. A reader strand has a hold on a lock for
* each lock action that is not matched by an unlock action.
*
* @return the number of holds on the read lock by the current strand,
* or zero if the read lock is not held by the current strand
* @since 1.6
*/
public int getReadHoldCount() {
return sync.getReadHoldCount();
}
/**
* Returns a collection containing strands that may be waiting to
* acquire the write lock. Because the actual set of strands may
* change dynamically while constructing this result, the returned
* collection is only a best-effort estimate. The elements of the
* returned collection are in no particular order. This method is
* designed to facilitate construction of subclasses that provide
* more extensive lock monitoring facilities.
*
* @return the collection of strands
*/
protected Collection getQueuedWriterStrands() {
return sync.getExclusiveQueuedStrands();
}
/**
* Returns a collection containing strands that may be waiting to
* acquire the read lock. Because the actual set of strands may
* change dynamically while constructing this result, the returned
* collection is only a best-effort estimate. The elements of the
* returned collection are in no particular order. This method is
* designed to facilitate construction of subclasses that provide
* more extensive lock monitoring facilities.
*
* @return the collection of strands
*/
protected Collection getQueuedReaderStrands() {
return sync.getSharedQueuedStrands();
}
/**
* Queries whether any strands are waiting to acquire the read or
* write lock. Note that because cancellations may occur at any
* time, a {@code true} return does not guarantee that any other
* strand will ever acquire a lock. This method is designed
* primarily for use in monitoring of the system state.
*
* @return {@code true} if there may be other strands waiting to
* acquire the lock
*/
public final boolean hasQueuedStrands() {
return sync.hasQueuedStrands();
}
/**
* Queries whether the given strand is waiting to acquire either
* the read or write lock. Note that because cancellations may
* occur at any time, a {@code true} return does not guarantee
* that this strand will ever acquire a lock. This method is
* designed primarily for use in monitoring of the system state.
*
* @param strand the strand
* @return {@code true} if the given strand is queued waiting for this lock
* @throws NullPointerException if the strand is null
*/
public final boolean hasQueuedStrand(Strand strand) {
return sync.isQueued(strand);
}
/**
* Returns an estimate of the number of strands waiting to acquire
* either the read or write lock. The value is only an estimate
* because the number of strands may change dynamically while this
* method traverses internal data structures. This method is
* designed for use in monitoring of the system state, not for
* synchronization control.
*
* @return the estimated number of strands waiting for this lock
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
/**
* Returns a collection containing strands that may be waiting to
* acquire either the read or write lock. Because the actual set
* of strands may change dynamically while constructing this
* result, the returned collection is only a best-effort estimate.
* The elements of the returned collection are in no particular
* order. This method is designed to facilitate construction of
* subclasses that provide more extensive monitoring facilities.
*
* @return the collection of strands
*/
protected Collection getQueuedStrands() {
return sync.getQueuedStrands();
}
/**
* Queries whether any strands are waiting on the given condition
* associated with the write lock. Note that because timeouts and
* interrupts may occur at any time, a {@code true} return does
* not guarantee that a future {@code signal} will awaken any
* strands. This method is designed primarily for use in
* monitoring of the system state.
*
* @param condition the condition
* @return {@code true} if there are any waiting strands
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* Returns an estimate of the number of strands waiting on the
* given condition associated with the write lock. Note that because
* timeouts and interrupts may occur at any time, the estimate
* serves only as an upper bound on the actual number of waiters.
* This method is designed for use in monitoring of the system
* state, not for synchronization control.
*
* @param condition the condition
* @return the estimated number of waiting strands
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* Returns a collection containing those strands that may be
* waiting on the given condition associated with the write lock.
* Because the actual set of strands may change dynamically while
* constructing this result, the returned collection is only a
* best-effort estimate. The elements of the returned collection
* are in no particular order. This method is designed to
* facilitate construction of subclasses that provide more
* extensive condition monitoring facilities.
*
* @param condition the condition
* @return the collection of strands
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
protected Collection getWaitingStrands(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingStrands((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* Returns a string identifying this lock, as well as its lock state.
* The state, in brackets, includes the String {@code "Write locks ="}
* followed by the number of reentrantly held write locks, and the
* String {@code "Read locks ="} followed by the number of held
* read locks.
*
* @return a string identifying this lock, as well as its lock state
*/
public String toString() {
int c = sync.getCount();
int w = Sync.exclusiveCount(c);
int r = Sync.sharedCount(c);
return super.toString() +
"[Write locks = " + w + ", Read locks = " + r + "]";
}
}