All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.caseystella.analytics.outlier.batch.rpca.AugmentedDickeyFuller Maven / Gradle / Ivy

There is a newer version: 0.9.7
Show newest version
/**
 * Copyright (C) 2016 Hurence ([email protected])
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.caseystella.analytics.outlier.batch.rpca;


import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;

public class AugmentedDickeyFuller {

  private double[] ts;
  private int lag;
  private boolean needsDiff = true;
  private double[] zeroPaddedDiff;

  private double PVALUE_THRESHOLD = -3.45;

  /**
   * Uses the Augmented Dickey Fuller test to determine
   * if ts is a stationary time series
   * @param ts
   * @param lag
   */
  public AugmentedDickeyFuller(double[] ts, int lag) {
    this.ts = ts;
    this.lag = lag;
    computeADFStatistics();
  }

  /**
   * Uses the Augmented Dickey Fuller test to determine
   * if ts is a stationary time series
   * @param ts
   */
  public AugmentedDickeyFuller(double[] ts) {
    this.ts = ts;
    this.lag = (int) Math.floor(Math.cbrt((ts.length - 1)));
    computeADFStatistics();
  }

  private void computeADFStatistics() {
    double[] y = diff(ts);
    RealMatrix designMatrix = null;
    int k = lag+1;
    int n = ts.length - 1;

    RealMatrix z = MatrixUtils.createRealMatrix(laggedMatrix(y, k)); //has rows length(ts) - 1 - k + 1
    RealVector zcol1 = z.getColumnVector(0); //has length length(ts) - 1 - k + 1
    double[] xt1 = subsetArray(ts, k-1, n-1);  //ts[k:(length(ts) - 1)], has length length(ts) - 1 - k + 1
    double[] trend = sequence(k,n); //trend k:n, has length length(ts) - 1 - k + 1
    if (k > 1) {
      RealMatrix yt1 = z.getSubMatrix(0, ts.length - 1 - k, 1, k-1); //same as z but skips first column
      //build design matrix as cbind(xt1, 1, trend, yt1)
      designMatrix = MatrixUtils.createRealMatrix(ts.length - 1 - k + 1, 3 + k - 1);
      designMatrix.setColumn(0, xt1);
      designMatrix.setColumn(1, ones(ts.length - 1 - k + 1));
      designMatrix.setColumn(2, trend);
      designMatrix.setSubMatrix(yt1.getData(), 0, 3);

    } else {
      //build design matrix as cbind(xt1, 1, tt)
      designMatrix = MatrixUtils.createRealMatrix(ts.length - 1 - k + 1, 3);
      designMatrix.setColumn(0, xt1);
      designMatrix.setColumn(1, ones(ts.length - 1 - k + 1));
      designMatrix.setColumn(2, trend);
    }
		/*OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
		regression.setNoIntercept(true);
		regression.newSampleData(zcol1.toArray(), designMatrix.getData());
		double[] beta = regression.estimateRegressionParameters();
		double[] sd = regression.estimateRegressionParametersStandardErrors();
		*/
    RidgeRegression regression = new RidgeRegression(designMatrix.getData(), zcol1.toArray());
    regression.updateCoefficients(.0001);
    double[] beta = regression.getCoefficients();
    double[] sd = regression.getStandarderrors();

    double t = beta[0] / sd[0];
    if (t <= PVALUE_THRESHOLD) {
      this.needsDiff = true;
    } else {
      this.needsDiff = false;
    }
  }

  /**
   * Takes finite differences of x
   * @param x
   * @return Returns an array of length x.length-1 of
   * the first differences of x
   */
  private double[] diff(double[] x) {
    double[] diff = new double[x.length - 1];
    double[] zeroPaddedDiff = new double[x.length];
    zeroPaddedDiff[0] = 0;
    for (int i = 0; i < diff.length; i++) {
      double diff_i = x[i+1] - x[i];
      diff[i] = diff_i;
      zeroPaddedDiff[i+1] = diff_i;
    }
    this.zeroPaddedDiff = zeroPaddedDiff;
    return diff;
  }

  /**
   * Equivalent to matlab and python ones
   * @param n
   * @return an array of doubles of length n that are
   * initialized to 1
   */
  private double[] ones(int n) {
    double[] ones = new double[n];
    for (int i = 0; i < n; i++) {
      ones[i] = 1;
    }
    return ones;
  }

  /**
   * Equivalent to R's embed function
   * @param x time series vector
   * @param lag number of lags, where lag=1 is the same as no lags
   * @return a matrix that has x.length - lag + 1 rows by lag columns.
   */
  private double[][] laggedMatrix(double[]x, int lag) {
    double[][] laggedMatrix = new double[x.length - lag + 1][lag];
    for (int j = 0; j < lag; j++) { //loop through columns
      for (int i = 0; i < laggedMatrix.length; i++) {
        laggedMatrix[i][j] = x[lag - j - 1 + i];
      }
    }
    return laggedMatrix;
  }

  /**
   * Takes x[start] through x[end - 1]
   * @param x
   * @param start
   * @param end
   * @return
   */
  private double[] subsetArray(double[] x, int start, int end) {
    double[] subset = new double[end - start + 1];
    System.arraycopy(x, start, subset, 0, end - start + 1);
    return subset;
  }

  /**
   * Generates a sequence of ints [start, end]
   * @param start
   * @param end
   * @return
   */
  private double[] sequence(int start, int end) {
    double[] sequence = new double[end - start + 1];
    for (int i = start; i <= end; i++) {
      sequence[i - start] = i;
    }
    return sequence;
  }

  public boolean isNeedsDiff() {
    return needsDiff;
  }

  public double[] getZeroPaddedDiff() {
    return zeroPaddedDiff;
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy