com.ibm.icu.impl.coll.Collation Maven / Gradle / Ivy
The newest version!
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2010-2015, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* Collation.java, ported from collation.h/.cpp
*
* C++ version created on: 2010oct27
* created by: Markus W. Scherer
*/
package com.ibm.icu.impl.coll;
/**
* Collation v2 basic definitions and static helper functions.
*
* Data structures except for expansion tables store 32-bit CEs which are
* either specials (see tags below) or are compact forms of 64-bit CEs.
*/
public final class Collation {
/** UChar32 U_SENTINEL.
* TODO: Create a common, public constant?
*/
public static final int SENTINEL_CP = -1;
// ICU4C compare() API returns enum UCollationResult values (with UCOL_ prefix).
// ICU4J just returns int. We use these constants for ease of porting.
public static final int LESS = -1;
public static final int EQUAL = 0;
public static final int GREATER = 1;
// Special sort key bytes for all levels.
public static final int TERMINATOR_BYTE = 0;
public static final int LEVEL_SEPARATOR_BYTE = 1;
/** The secondary/tertiary lower limit for tailoring before any root elements. */
static final int BEFORE_WEIGHT16 = 0x100;
/**
* Merge-sort-key separator.
* Same as the unique primary and identical-level weights of U+FFFE.
* Must not be used as primary compression low terminator.
* Otherwise usable.
*/
public static final int MERGE_SEPARATOR_BYTE = 2;
public static final long MERGE_SEPARATOR_PRIMARY = 0x02000000; // U+FFFE
static final int MERGE_SEPARATOR_CE32 = 0x02000505; // U+FFFE
/**
* Primary compression low terminator, must be greater than MERGE_SEPARATOR_BYTE.
* Reserved value in primary second byte if the lead byte is compressible.
* Otherwise usable in all CE weight bytes.
*/
public static final int PRIMARY_COMPRESSION_LOW_BYTE = 3;
/**
* Primary compression high terminator.
* Reserved value in primary second byte if the lead byte is compressible.
* Otherwise usable in all CE weight bytes.
*/
public static final int PRIMARY_COMPRESSION_HIGH_BYTE = 0xff;
/** Default secondary/tertiary weight lead byte. */
static final int COMMON_BYTE = 5;
public static final int COMMON_WEIGHT16 = 0x0500;
/** Middle 16 bits of a CE with a common secondary weight. */
static final int COMMON_SECONDARY_CE = 0x05000000;
/** Lower 16 bits of a CE with a common tertiary weight. */
static final int COMMON_TERTIARY_CE = 0x0500;
/** Lower 32 bits of a CE with common secondary and tertiary weights. */
public static final int COMMON_SEC_AND_TER_CE = 0x05000500;
static final int SECONDARY_MASK = 0xffff0000;
public static final int CASE_MASK = 0xc000;
static final int SECONDARY_AND_CASE_MASK = SECONDARY_MASK | CASE_MASK;
/** Only the 2*6 bits for the pure tertiary weight. */
public static final int ONLY_TERTIARY_MASK = 0x3f3f;
/** Only the secondary & tertiary bits; no case, no quaternary. */
static final int ONLY_SEC_TER_MASK = SECONDARY_MASK | ONLY_TERTIARY_MASK;
/** Case bits and tertiary bits. */
static final int CASE_AND_TERTIARY_MASK = CASE_MASK | ONLY_TERTIARY_MASK;
public static final int QUATERNARY_MASK = 0xc0;
/** Case bits and quaternary bits. */
public static final int CASE_AND_QUATERNARY_MASK = CASE_MASK | QUATERNARY_MASK;
static final int UNASSIGNED_IMPLICIT_BYTE = 0xfe; // compressible
/**
* First unassigned: AlphabeticIndex overflow boundary.
* We want a 3-byte primary so that it fits into the root elements table.
*
* This 3-byte primary will not collide with
* any unassigned-implicit 4-byte primaries because
* the first few hundred Unicode code points all have real mappings.
*/
static final long FIRST_UNASSIGNED_PRIMARY = 0xfe040200L;
static final int TRAIL_WEIGHT_BYTE = 0xff; // not compressible
static final long FIRST_TRAILING_PRIMARY = 0xff020200L; // [first trailing]
public static final long MAX_PRIMARY = 0xffff0000L; // U+FFFF
static final int MAX_REGULAR_CE32 = 0xffff0505; // U+FFFF
// CE32 value for U+FFFD as well as illegal UTF-8 byte sequences (which behave like U+FFFD).
// We use the third-highest primary weight for U+FFFD (as in UCA 6.3+).
public static final long FFFD_PRIMARY = MAX_PRIMARY - 0x20000;
static final int FFFD_CE32 = MAX_REGULAR_CE32 - 0x20000;
/**
* A CE32 is special if its low byte is this or greater.
* Impossible case bits 11 mark special CE32s.
* This value itself is used to indicate a fallback to the base collator.
*/
static final int SPECIAL_CE32_LOW_BYTE = 0xc0;
static final int FALLBACK_CE32 = SPECIAL_CE32_LOW_BYTE;
/**
* Low byte of a long-primary special CE32.
*/
static final int LONG_PRIMARY_CE32_LOW_BYTE = 0xc1; // SPECIAL_CE32_LOW_BYTE | LONG_PRIMARY_TAG
static final int UNASSIGNED_CE32 = 0xffffffff; // Compute an unassigned-implicit CE.
static final int NO_CE32 = 1;
/** No CE: End of input. Only used in runtime code, not stored in data. */
static final long NO_CE_PRIMARY = 1; // not a left-adjusted weight
static final int NO_CE_WEIGHT16 = 0x0100; // weight of LEVEL_SEPARATOR_BYTE
public static final long NO_CE = 0x101000100L; // NO_CE_PRIMARY, NO_CE_WEIGHT16, NO_CE_WEIGHT16
/** Sort key levels. */
/** Unspecified level. */
public static final int NO_LEVEL = 0;
public static final int PRIMARY_LEVEL = 1;
public static final int SECONDARY_LEVEL = 2;
public static final int CASE_LEVEL = 3;
public static final int TERTIARY_LEVEL = 4;
public static final int QUATERNARY_LEVEL = 5;
public static final int IDENTICAL_LEVEL = 6;
/** Beyond sort key bytes. */
public static final int ZERO_LEVEL = 7;
/**
* Sort key level flags: xx_FLAG = 1 << xx_LEVEL.
* In Java, use enum Level with flag() getters, or use EnumSet rather than hand-made bit sets.
*/
static final int NO_LEVEL_FLAG = 1;
static final int PRIMARY_LEVEL_FLAG = 2;
static final int SECONDARY_LEVEL_FLAG = 4;
static final int CASE_LEVEL_FLAG = 8;
static final int TERTIARY_LEVEL_FLAG = 0x10;
static final int QUATERNARY_LEVEL_FLAG = 0x20;
static final int IDENTICAL_LEVEL_FLAG = 0x40;
static final int ZERO_LEVEL_FLAG = 0x80;
/**
* Special-CE32 tags, from bits 3..0 of a special 32-bit CE.
* Bits 31..8 are available for tag-specific data.
* Bits 5..4: Reserved. May be used in the future to indicate lccc!=0 and tccc!=0.
*/
/**
* Fall back to the base collator.
* This is the tag value in SPECIAL_CE32_LOW_BYTE and FALLBACK_CE32.
* Bits 31..8: Unused, 0.
*/
static final int FALLBACK_TAG = 0;
/**
* Long-primary CE with COMMON_SEC_AND_TER_CE.
* Bits 31..8: Three-byte primary.
*/
static final int LONG_PRIMARY_TAG = 1;
/**
* Long-secondary CE with zero primary.
* Bits 31..16: Secondary weight.
* Bits 15.. 8: Tertiary weight.
*/
static final int LONG_SECONDARY_TAG = 2;
/**
* Unused.
* May be used in the future for single-byte secondary CEs (SHORT_SECONDARY_TAG),
* storing the secondary in bits 31..24, the ccc in bits 23..16,
* and the tertiary in bits 15..8.
*/
static final int RESERVED_TAG_3 = 3;
/**
* Latin mini expansions of two simple CEs [pp, 05, tt] [00, ss, 05].
* Bits 31..24: Single-byte primary weight pp of the first CE.
* Bits 23..16: Tertiary weight tt of the first CE.
* Bits 15.. 8: Secondary weight ss of the second CE.
*/
static final int LATIN_EXPANSION_TAG = 4;
/**
* Points to one or more simple/long-primary/long-secondary 32-bit CE32s.
* Bits 31..13: Index into int table.
* Bits 12.. 8: Length=1..31.
*/
static final int EXPANSION32_TAG = 5;
/**
* Points to one or more 64-bit CEs.
* Bits 31..13: Index into CE table.
* Bits 12.. 8: Length=1..31.
*/
static final int EXPANSION_TAG = 6;
/**
* Builder data, used only in the CollationDataBuilder, not in runtime data.
*
* If bit 8 is 0: Builder context, points to a list of context-sensitive mappings.
* Bits 31..13: Index to the builder's list of ConditionalCE32 for this character.
* Bits 12.. 9: Unused, 0.
*
* If bit 8 is 1 (IS_BUILDER_JAMO_CE32): Builder-only jamoCE32 value.
* The builder fetches the Jamo CE32 from the trie.
* Bits 31..13: Jamo code point.
* Bits 12.. 9: Unused, 0.
*/
static final int BUILDER_DATA_TAG = 7;
/**
* Points to prefix trie.
* Bits 31..13: Index into prefix/contraction data.
* Bits 12.. 8: Unused, 0.
*/
static final int PREFIX_TAG = 8;
/**
* Points to contraction data.
* Bits 31..13: Index into prefix/contraction data.
* Bits 12..11: Unused, 0.
* Bit 10: CONTRACT_TRAILING_CCC flag.
* Bit 9: CONTRACT_NEXT_CCC flag.
* Bit 8: CONTRACT_SINGLE_CP_NO_MATCH flag.
*/
static final int CONTRACTION_TAG = 9;
/**
* Decimal digit.
* Bits 31..13: Index into int table for non-numeric-collation CE32.
* Bit 12: Unused, 0.
* Bits 11.. 8: Digit value 0..9.
*/
static final int DIGIT_TAG = 10;
/**
* Tag for U+0000, for moving the NUL-termination handling
* from the regular fastpath into specials-handling code.
* Bits 31..8: Unused, 0.
*/
static final int U0000_TAG = 11;
/**
* Tag for a Hangul syllable.
* Bits 31..9: Unused, 0.
* Bit 8: HANGUL_NO_SPECIAL_JAMO flag.
*/
static final int HANGUL_TAG = 12;
/**
* Tag for a lead surrogate code unit.
* Optional optimization for UTF-16 string processing.
* Bits 31..10: Unused, 0.
* 9.. 8: =0: All associated supplementary code points are unassigned-implicit.
* =1: All associated supplementary code points fall back to the base data.
* else: (Normally 2) Look up the data for the supplementary code point.
*/
static final int LEAD_SURROGATE_TAG = 13;
/**
* Tag for CEs with primary weights in code point order.
* Bits 31..13: Index into CE table, for one data "CE".
* Bits 12.. 8: Unused, 0.
*
* This data "CE" has the following bit fields:
* Bits 63..32: Three-byte primary pppppp00.
* 31.. 8: Start/base code point of the in-order range.
* 7: Flag isCompressible primary.
* 6.. 0: Per-code point primary-weight increment.
*/
static final int OFFSET_TAG = 14;
/**
* Implicit CE tag. Compute an unassigned-implicit CE.
* All bits are set (UNASSIGNED_CE32=0xffffffff).
*/
static final int IMPLICIT_TAG = 15;
static boolean isAssignedCE32(int ce32) {
return ce32 != FALLBACK_CE32 && ce32 != UNASSIGNED_CE32;
}
/**
* We limit the number of CEs in an expansion
* so that we can use a small number of length bits in the data structure,
* and so that an implementation can copy CEs at runtime without growing a destination buffer.
*/
static final int MAX_EXPANSION_LENGTH = 31;
static final int MAX_INDEX = 0x7ffff;
/**
* Set if there is no match for the single (no-suffix) character itself.
* This is only possible if there is a prefix.
* In this case, discontiguous contraction matching cannot add combining marks
* starting from an empty suffix.
* The default CE32 is used anyway if there is no suffix match.
*/
static final int CONTRACT_SINGLE_CP_NO_MATCH = 0x100;
/** Set if the first character of every contraction suffix has lccc!=0. */
static final int CONTRACT_NEXT_CCC = 0x200;
/** Set if any contraction suffix ends with lccc!=0. */
static final int CONTRACT_TRAILING_CCC = 0x400;
/** For HANGUL_TAG: None of its Jamo CE32s isSpecialCE32(). */
static final int HANGUL_NO_SPECIAL_JAMO = 0x100;
static final int LEAD_ALL_UNASSIGNED = 0;
static final int LEAD_ALL_FALLBACK = 0x100;
static final int LEAD_MIXED = 0x200;
static final int LEAD_TYPE_MASK = 0x300;
static int makeLongPrimaryCE32(long p) { return (int)(p | LONG_PRIMARY_CE32_LOW_BYTE); }
/** Turns the long-primary CE32 into a primary weight pppppp00. */
static long primaryFromLongPrimaryCE32(int ce32) {
return (long)ce32 & 0xffffff00L;
}
static long ceFromLongPrimaryCE32(int ce32) {
return ((long)(ce32 & 0xffffff00) << 32) | COMMON_SEC_AND_TER_CE;
}
static int makeLongSecondaryCE32(int lower32) {
return lower32 | SPECIAL_CE32_LOW_BYTE | LONG_SECONDARY_TAG;
}
static long ceFromLongSecondaryCE32(int ce32) {
return (long)ce32 & 0xffffff00L;
}
/** Makes a special CE32 with tag, index and length. */
static int makeCE32FromTagIndexAndLength(int tag, int index, int length) {
return (index << 13) | (length << 8) | SPECIAL_CE32_LOW_BYTE | tag;
}
/** Makes a special CE32 with only tag and index. */
static int makeCE32FromTagAndIndex(int tag, int index) {
return (index << 13) | SPECIAL_CE32_LOW_BYTE | tag;
}
static boolean isSpecialCE32(int ce32) {
return (ce32 & 0xff) >= SPECIAL_CE32_LOW_BYTE;
}
static int tagFromCE32(int ce32) {
return ce32 & 0xf;
}
static boolean hasCE32Tag(int ce32, int tag) {
return isSpecialCE32(ce32) && tagFromCE32(ce32) == tag;
}
static boolean isLongPrimaryCE32(int ce32) {
return hasCE32Tag(ce32, LONG_PRIMARY_TAG);
}
static boolean isSimpleOrLongCE32(int ce32) {
return !isSpecialCE32(ce32) ||
tagFromCE32(ce32) == LONG_PRIMARY_TAG ||
tagFromCE32(ce32) == LONG_SECONDARY_TAG;
}
/**
* @return true if the ce32 yields one or more CEs without further data lookups
*/
static boolean isSelfContainedCE32(int ce32) {
return !isSpecialCE32(ce32) ||
tagFromCE32(ce32) == LONG_PRIMARY_TAG ||
tagFromCE32(ce32) == LONG_SECONDARY_TAG ||
tagFromCE32(ce32) == LATIN_EXPANSION_TAG;
}
static boolean isPrefixCE32(int ce32) {
return hasCE32Tag(ce32, PREFIX_TAG);
}
static boolean isContractionCE32(int ce32) {
return hasCE32Tag(ce32, CONTRACTION_TAG);
}
static boolean ce32HasContext(int ce32) {
return isSpecialCE32(ce32) &&
(tagFromCE32(ce32) == PREFIX_TAG ||
tagFromCE32(ce32) == CONTRACTION_TAG);
}
/**
* Get the first of the two Latin-expansion CEs encoded in ce32.
* @see LATIN_EXPANSION_TAG
*/
static long latinCE0FromCE32(int ce32) {
return ((long)(ce32 & 0xff000000) << 32) | COMMON_SECONDARY_CE | ((ce32 & 0xff0000) >> 8);
}
/**
* Get the second of the two Latin-expansion CEs encoded in ce32.
* @see LATIN_EXPANSION_TAG
*/
static long latinCE1FromCE32(int ce32) {
return (((long)ce32 & 0xff00) << 16) | COMMON_TERTIARY_CE;
}
/**
* Returns the data index from a special CE32.
*/
static int indexFromCE32(int ce32) {
return ce32 >>> 13;
}
/**
* Returns the data length from a ce32.
*/
static int lengthFromCE32(int ce32) {
return (ce32 >> 8) & 31;
}
/**
* Returns the digit value from a DIGIT_TAG ce32.
*/
static char digitFromCE32(int ce32) {
return (char)((ce32 >> 8) & 0xf);
}
/** Returns a 64-bit CE from a simple CE32 (not special). */
static long ceFromSimpleCE32(int ce32) {
// normal form ppppsstt -> pppp0000ss00tt00
assert (ce32 & 0xff) < SPECIAL_CE32_LOW_BYTE;
return ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | ((ce32 & 0xff) << 8);
}
/** Returns a 64-bit CE from a simple/long-primary/long-secondary CE32. */
static long ceFromCE32(int ce32) {
int tertiary = ce32 & 0xff;
if(tertiary < SPECIAL_CE32_LOW_BYTE) {
// normal form ppppsstt -> pppp0000ss00tt00
return ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | (tertiary << 8);
} else {
ce32 -= tertiary;
if((tertiary & 0xf) == LONG_PRIMARY_TAG) {
// long-primary form ppppppC1 -> pppppp00050000500
return ((long)ce32 << 32) | COMMON_SEC_AND_TER_CE;
} else {
// long-secondary form ssssttC2 -> 00000000sssstt00
assert (tertiary & 0xf) == LONG_SECONDARY_TAG;
return ce32 & 0xffffffffL;
}
}
}
/** Creates a CE from a primary weight. */
public static long makeCE(long p) {
return (p << 32) | COMMON_SEC_AND_TER_CE;
}
/**
* Creates a CE from a primary weight,
* 16-bit secondary/tertiary weights, and a 2-bit quaternary.
*/
static long makeCE(long p, int s, int t, int q) {
return (p << 32) | ((long)s << 16) | t | (q << 6);
}
/**
* Increments a 2-byte primary by a code point offset.
*/
public static long incTwoBytePrimaryByOffset(long basePrimary, boolean isCompressible,
int offset) {
// Extract the second byte, minus the minimum byte value,
// plus the offset, modulo the number of usable byte values, plus the minimum.
// Reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
long primary;
if(isCompressible) {
offset += ((int)(basePrimary >> 16) & 0xff) - 4;
primary = ((offset % 251) + 4) << 16;
offset /= 251;
} else {
offset += ((int)(basePrimary >> 16) & 0xff) - 2;
primary = ((offset % 254) + 2) << 16;
offset /= 254;
}
// First byte, assume no further overflow.
return primary | ((basePrimary & 0xff000000L) + ((long)offset << 24));
}
/**
* Increments a 3-byte primary by a code point offset.
*/
public static long incThreeBytePrimaryByOffset(long basePrimary, boolean isCompressible,
int offset) {
// Extract the third byte, minus the minimum byte value,
// plus the offset, modulo the number of usable byte values, plus the minimum.
offset += ((int)(basePrimary >> 8) & 0xff) - 2;
long primary = ((offset % 254) + 2) << 8;
offset /= 254;
// Same with the second byte,
// but reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
if(isCompressible) {
offset += ((int)(basePrimary >> 16) & 0xff) - 4;
primary |= ((offset % 251) + 4) << 16;
offset /= 251;
} else {
offset += ((int)(basePrimary >> 16) & 0xff) - 2;
primary |= ((offset % 254) + 2) << 16;
offset /= 254;
}
// First byte, assume no further overflow.
return primary | ((basePrimary & 0xff000000L) + ((long)offset << 24));
}
/**
* Decrements a 2-byte primary by one range step (1..0x7f).
*/
static long decTwoBytePrimaryByOneStep(long basePrimary, boolean isCompressible, int step) {
// Extract the second byte, minus the minimum byte value,
// minus the step, modulo the number of usable byte values, plus the minimum.
// Reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
// Assume no further underflow for the first byte.
assert(0 < step && step <= 0x7f);
int byte2 = ((int)(basePrimary >> 16) & 0xff) - step;
if(isCompressible) {
if(byte2 < 4) {
byte2 += 251;
basePrimary -= 0x1000000;
}
} else {
if(byte2 < 2) {
byte2 += 254;
basePrimary -= 0x1000000;
}
}
return (basePrimary & 0xff000000L) | (byte2 << 16);
}
/**
* Decrements a 3-byte primary by one range step (1..0x7f).
*/
static long decThreeBytePrimaryByOneStep(long basePrimary, boolean isCompressible, int step) {
// Extract the third byte, minus the minimum byte value,
// minus the step, modulo the number of usable byte values, plus the minimum.
assert(0 < step && step <= 0x7f);
int byte3 = ((int)(basePrimary >> 8) & 0xff) - step;
if(byte3 >= 2) {
return (basePrimary & 0xffff0000L) | (byte3 << 8);
}
byte3 += 254;
// Same with the second byte,
// but reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
int byte2 = ((int)(basePrimary >> 16) & 0xff) - 1;
if(isCompressible) {
if(byte2 < 4) {
byte2 = 0xfe;
basePrimary -= 0x1000000;
}
} else {
if(byte2 < 2) {
byte2 = 0xff;
basePrimary -= 0x1000000;
}
}
// First byte, assume no further underflow.
return (basePrimary & 0xff000000L) | (byte2 << 16) | (byte3 << 8);
}
/**
* Computes a 3-byte primary for c's OFFSET_TAG data "CE".
*/
static long getThreeBytePrimaryForOffsetData(int c, long dataCE) {
long p = dataCE >>> 32; // three-byte primary pppppp00
int lower32 = (int)dataCE; // base code point b & step s: bbbbbbss (bit 7: isCompressible)
int offset = (c - (lower32 >> 8)) * (lower32 & 0x7f); // delta * increment
boolean isCompressible = (lower32 & 0x80) != 0;
return Collation.incThreeBytePrimaryByOffset(p, isCompressible, offset);
}
/**
* Returns the unassigned-character implicit primary weight for any valid code point c.
*/
static long unassignedPrimaryFromCodePoint(int c) {
// Create a gap before U+0000. Use c=-1 for [first unassigned].
++c;
// Fourth byte: 18 values, every 14th byte value (gap of 13).
long primary = 2 + (c % 18) * 14;
c /= 18;
// Third byte: 254 values.
primary |= (2 + (c % 254)) << 8;
c /= 254;
// Second byte: 251 values 04..FE excluding the primary compression bytes.
primary |= (4 + (c % 251)) << 16;
// One lead byte covers all code points (c < 0x1182B4 = 1*251*254*18).
return primary | ((long)UNASSIGNED_IMPLICIT_BYTE << 24);
}
static long unassignedCEFromCodePoint(int c) {
return makeCE(unassignedPrimaryFromCodePoint(c));
}
// private Collation() // No instantiation.
}