All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ibm.icu.impl.coll.CollationIterator Maven / Gradle / Ivy

Go to download

International Component for Unicode for Java (ICU4J) is a mature, widely used Java library providing Unicode and Globalization support

There is a newer version: 76.1
Show newest version
/*
*******************************************************************************
* Copyright (C) 2010-2014, International Business Machines
* Corporation and others.  All Rights Reserved.
*******************************************************************************
* CollationIterator.java, ported from collationiterator.h/.cpp
*
* C++ version created on: 2010oct27
* created by: Markus W. Scherer
*/

package com.ibm.icu.impl.coll;

import com.ibm.icu.impl.Normalizer2Impl.Hangul;
import com.ibm.icu.impl.Trie2_32;
import com.ibm.icu.util.BytesTrie;
import com.ibm.icu.util.CharsTrie;
import com.ibm.icu.util.ICUException;

/**
 * Collation element iterator and abstract character iterator.
 *
 * When a method returns a code point value, it must be in 0..10FFFF,
 * except it can be negative as a sentinel value.
 */
public abstract class CollationIterator {
    private static final class CEBuffer {
        /** Large enough for CEs of most short strings. */
        private static final int INITIAL_CAPACITY = 40;

        CEBuffer() {}

        void append(long ce) {
            if(length >= INITIAL_CAPACITY) {
                ensureAppendCapacity(1);
            }
            buffer[length++] = ce;
        }

        void appendUnsafe(long ce) {
            buffer[length++] = ce;
        }

        void ensureAppendCapacity(int appCap) {
            int capacity = buffer.length;
            if((length + appCap) <= capacity) { return; }
            do {
                if(capacity < 1000) {
                    capacity *= 4;
                } else {
                    capacity *= 2;
                }
            } while(capacity < (length + appCap));
            long[] newBuffer = new long[capacity];
            System.arraycopy(buffer, 0, newBuffer, 0, length);
            buffer = newBuffer;
        }

        void incLength() {
            // Use INITIAL_CAPACITY for a very simple fastpath.
            // (Rather than buffer.getCapacity().)
            if(length >= INITIAL_CAPACITY) {
                ensureAppendCapacity(1);
            }
            ++length;
        }

        long set(int i, long ce) {
            return buffer[i] = ce;
        }
        long get(int i) { return buffer[i]; }

        long[] getCEs() { return buffer; }

        int length = 0;

        private long[] buffer = new long[INITIAL_CAPACITY];
    }

    // State of combining marks skipped in discontiguous contraction.
    // We create a state object on first use and keep it around deactivated between uses.
    private static final class SkippedState {
        // Born active but empty.
        SkippedState() {}
        void clear() {
            oldBuffer.setLength(0);
            pos = 0;
            // The newBuffer is reset by setFirstSkipped().
        }

        boolean isEmpty() { return oldBuffer.length() == 0; }

        boolean hasNext() { return pos < oldBuffer.length(); }

        // Requires hasNext().
        int next() {
            int c = oldBuffer.codePointAt(pos);
            pos += Character.charCount(c);
            return c;
        }

        // Accounts for one more input code point read beyond the end of the marks buffer.
        void incBeyond() {
            assert(!hasNext());
            ++pos;
        }

        // Goes backward through the skipped-marks buffer.
        // Returns the number of code points read beyond the skipped marks
        // that need to be backtracked through normal input.
        int backwardNumCodePoints(int n) {
            int length = oldBuffer.length();
            int beyond = pos - length;
            if(beyond > 0) {
                if(beyond >= n) {
                    // Not back far enough to re-enter the oldBuffer.
                    pos -= n;
                    return n;
                } else {
                    // Back out all beyond-oldBuffer code points and re-enter the buffer.
                    pos = oldBuffer.offsetByCodePoints(length, beyond - n);
                    return beyond;
                }
            } else {
                // Go backwards from inside the oldBuffer.
                pos = oldBuffer.offsetByCodePoints(pos, -n);
                return 0;
            }
        }

        void setFirstSkipped(int c) {
            skipLengthAtMatch = 0;
            newBuffer.setLength(0);
            newBuffer.appendCodePoint(c);
        }

        void skip(int c) {
            newBuffer.appendCodePoint(c);
        }

        void recordMatch() { skipLengthAtMatch = newBuffer.length(); }

        // Replaces the characters we consumed with the newly skipped ones.
        void replaceMatch() {
            // Note: UnicodeString.replace() pins pos to at most length().
            int oldLength = oldBuffer.length();
            if(pos > oldLength) { pos = oldLength; }
            oldBuffer.delete(0, pos).insert(0, newBuffer, 0, skipLengthAtMatch);
            pos = 0;
        }

        void saveTrieState(CharsTrie trie) { trie.saveState(state); }
        void resetToTrieState(CharsTrie trie) { trie.resetToState(state); }

        // Combining marks skipped in previous discontiguous-contraction matching.
        // After that discontiguous contraction was completed, we start reading them from here.
        private final StringBuilder oldBuffer = new StringBuilder();
        // Combining marks newly skipped in current discontiguous-contraction matching.
        // These might have been read from the normal text or from the oldBuffer.
        private final StringBuilder newBuffer = new StringBuilder();
        // Reading index in oldBuffer,
        // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()).
        private int pos;
        // newBuffer.length() at the time of the last matching character.
        // When a partial match fails, we back out skipped and partial-matching input characters.
        private int skipLengthAtMatch;
        // We save the trie state before we attempt to match a character,
        // so that we can skip it and try the next one.
        private CharsTrie.State state = new CharsTrie.State();
    };

    /**
     * Partially constructs the iterator.
     * In Java, we cache partially constructed iterators
     * and finish their setup when starting to work on text
     * (via reset(boolean) and the setText(numeric, ...) methods of subclasses).
     * This avoids memory allocations for iterators that remain unused.
     *
     * 

In C++, there is only one constructor, and iterators are * stack-allocated as needed. */ public CollationIterator(CollationData d) { trie = d.trie; data = d; numCpFwd = -1; isNumeric = false; ceBuffer = null; } public CollationIterator(CollationData d, boolean numeric) { trie = d.trie; data = d; numCpFwd = -1; isNumeric = numeric; ceBuffer = new CEBuffer(); } @Override public boolean equals(Object other) { // Subclasses: Call this method and then add more specific checks. // Compare the iterator state but not the collation data (trie & data fields): // Assume that the caller compares the data. // Ignore skipped since that should be unused between calls to nextCE(). // (It only stays around to avoid another memory allocation.) if(other == null) { return false; } if(!this.getClass().equals(other.getClass())) { return false; } CollationIterator o = (CollationIterator)other; if(!(ceBuffer.length == o.ceBuffer.length && cesIndex == o.cesIndex && numCpFwd == o.numCpFwd && isNumeric == o.isNumeric)) { return false; } for(int i = 0; i < ceBuffer.length; ++i) { if(ceBuffer.get(i) != o.ceBuffer.get(i)) { return false; } } return true; } /** * Resets the iterator state and sets the position to the specified offset. * Subclasses must implement, and must call the parent class method, * or CollationIterator.reset(). */ public abstract void resetToOffset(int newOffset); public abstract int getOffset(); /** * Returns the next collation element. */ public final long nextCE() { if(cesIndex < ceBuffer.length) { // Return the next buffered CE. return ceBuffer.get(cesIndex++); } assert cesIndex == ceBuffer.length; ceBuffer.incLength(); long cAndCE32 = handleNextCE32(); int c = (int)(cAndCE32 >> 32); int ce32 = (int)cAndCE32; int t = ce32 & 0xff; if(t < Collation.SPECIAL_CE32_LOW_BYTE) { // Forced-inline of isSpecialCE32(ce32). // Normal CE from the main data. // Forced-inline of ceFromSimpleCE32(ce32). return ceBuffer.set(cesIndex++, ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | (t << 8)); } CollationData d; // The compiler should be able to optimize the previous and the following // comparisons of t with the same constant. if(t == Collation.SPECIAL_CE32_LOW_BYTE) { if(c < 0) { return ceBuffer.set(cesIndex++, Collation.NO_CE); } d = data.base; ce32 = d.getCE32(c); t = ce32 & 0xff; if(t < Collation.SPECIAL_CE32_LOW_BYTE) { // Normal CE from the base data. return ceBuffer.set(cesIndex++, ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | (t << 8)); } } else { d = data; } if(t == Collation.LONG_PRIMARY_CE32_LOW_BYTE) { // Forced-inline of ceFromLongPrimaryCE32(ce32). return ceBuffer.set(cesIndex++, ((long)(ce32 - t) << 32) | Collation.COMMON_SEC_AND_TER_CE); } return nextCEFromCE32(d, c, ce32); } /** * Fetches all CEs. * @return getCEsLength() */ public final int fetchCEs() { while(nextCE() != Collation.NO_CE) { // No need to loop for each expansion CE. cesIndex = ceBuffer.length; } return ceBuffer.length; } /** * Overwrites the current CE (the last one returned by nextCE()). */ final void setCurrentCE(long ce) { assert cesIndex > 0; ceBuffer.set(cesIndex - 1, ce); } /** * Returns the previous collation element. */ public final long previousCE(UVector32 offsets) { if(ceBuffer.length > 0) { // Return the previous buffered CE. return ceBuffer.get(--ceBuffer.length); } offsets.removeAllElements(); int limitOffset = getOffset(); int c = previousCodePoint(); if(c < 0) { return Collation.NO_CE; } if(data.isUnsafeBackward(c, isNumeric)) { return previousCEUnsafe(c, offsets); } // Simple, safe-backwards iteration: // Get a CE going backwards, handle prefixes but no contractions. int ce32 = data.getCE32(c); CollationData d; if(ce32 == Collation.FALLBACK_CE32) { d = data.base; ce32 = d.getCE32(c); } else { d = data; } if(Collation.isSimpleOrLongCE32(ce32)) { return Collation.ceFromCE32(ce32); } appendCEsFromCE32(d, c, ce32, false); if(ceBuffer.length > 1) { offsets.addElement(getOffset()); // For an expansion, the offset of each non-initial CE is the limit offset, // consistent with forward iteration. while(offsets.size() <= ceBuffer.length) { offsets.addElement(limitOffset); }; } return ceBuffer.get(--ceBuffer.length); } public final int getCEsLength() { return ceBuffer.length; } public final long getCE(int i) { return ceBuffer.get(i); } public final long[] getCEs() { return ceBuffer.getCEs(); } final void clearCEs() { cesIndex = ceBuffer.length = 0; } public final void clearCEsIfNoneRemaining() { if(cesIndex == ceBuffer.length) { clearCEs(); } } /** * Returns the next code point (with post-increment). * Public for identical-level comparison and for testing. */ public abstract int nextCodePoint(); /** * Returns the previous code point (with pre-decrement). * Public for identical-level comparison and for testing. */ public abstract int previousCodePoint(); protected final void reset() { cesIndex = ceBuffer.length = 0; if(skipped != null) { skipped.clear(); } } /** * Resets the state as well as the numeric setting, * and completes the initialization. * Only exists in Java where we reset cached CollationIterator instances * rather than stack-allocating temporary ones. * (See also the constructor comments.) */ protected final void reset(boolean numeric) { if(ceBuffer == null) { ceBuffer = new CEBuffer(); } reset(); isNumeric = numeric; } /** * Returns the next code point and its local CE32 value. * Returns Collation.FALLBACK_CE32 at the end of the text (c<0) * or when c's CE32 value is to be looked up in the base data (fallback). * * The code point is used for fallbacks, context and implicit weights. * It is ignored when the returned CE32 is not special (e.g., FFFD_CE32). * * Returns the code point in bits 63..32 (signed) and the CE32 in bits 31..0. */ protected long handleNextCE32() { int c = nextCodePoint(); if(c < 0) { return NO_CP_AND_CE32; } return makeCodePointAndCE32Pair(c, data.getCE32(c)); } protected long makeCodePointAndCE32Pair(int c, int ce32) { return ((long)c << 32) | (ce32 & 0xffffffffL); } protected static final long NO_CP_AND_CE32 = (-1L << 32) | (Collation.FALLBACK_CE32 & 0xffffffffL); /** * Called when handleNextCE32() returns a LEAD_SURROGATE_TAG for a lead surrogate code unit. * Returns the trail surrogate in that case and advances past it, * if a trail surrogate follows the lead surrogate. * Otherwise returns any other code unit and does not advance. */ protected char handleGetTrailSurrogate() { return 0; } /** * Called when handleNextCE32() returns with c==0, to see whether it is a NUL terminator. * (Not needed in Java.) */ /*protected boolean foundNULTerminator() { return false; }*/ /** * @return false if surrogate code points U+D800..U+DFFF * map to their own implicit primary weights (for UTF-16), * or true if they map to CE(U+FFFD) (for UTF-8) */ protected boolean forbidSurrogateCodePoints() { return false; } protected abstract void forwardNumCodePoints(int num); protected abstract void backwardNumCodePoints(int num); /** * Returns the CE32 from the data trie. * Normally the same as data.getCE32(), but overridden in the builder. * Call this only when the faster data.getCE32() cannot be used. */ protected int getDataCE32(int c) { return data.getCE32(c); } protected int getCE32FromBuilderData(int ce32) { throw new ICUException("internal program error: should be unreachable"); } protected final void appendCEsFromCE32(CollationData d, int c, int ce32, boolean forward) { while(Collation.isSpecialCE32(ce32)) { switch(Collation.tagFromCE32(ce32)) { case Collation.FALLBACK_TAG: case Collation.RESERVED_TAG_3: throw new ICUException("internal program error: should be unreachable"); case Collation.LONG_PRIMARY_TAG: ceBuffer.append(Collation.ceFromLongPrimaryCE32(ce32)); return; case Collation.LONG_SECONDARY_TAG: ceBuffer.append(Collation.ceFromLongSecondaryCE32(ce32)); return; case Collation.LATIN_EXPANSION_TAG: ceBuffer.ensureAppendCapacity(2); ceBuffer.set(ceBuffer.length, Collation.latinCE0FromCE32(ce32)); ceBuffer.set(ceBuffer.length + 1, Collation.latinCE1FromCE32(ce32)); ceBuffer.length += 2; return; case Collation.EXPANSION32_TAG: { int index = Collation.indexFromCE32(ce32); int length = Collation.lengthFromCE32(ce32); ceBuffer.ensureAppendCapacity(length); do { ceBuffer.appendUnsafe(Collation.ceFromCE32(d.ce32s[index++])); } while(--length > 0); return; } case Collation.EXPANSION_TAG: { int index = Collation.indexFromCE32(ce32); int length = Collation.lengthFromCE32(ce32); ceBuffer.ensureAppendCapacity(length); do { ceBuffer.appendUnsafe(d.ces[index++]); } while(--length > 0); return; } case Collation.BUILDER_DATA_TAG: ce32 = getCE32FromBuilderData(ce32); if(ce32 == Collation.FALLBACK_CE32) { d = data.base; ce32 = d.getCE32(c); } break; case Collation.PREFIX_TAG: if(forward) { backwardNumCodePoints(1); } ce32 = getCE32FromPrefix(d, ce32); if(forward) { forwardNumCodePoints(1); } break; case Collation.CONTRACTION_TAG: { int index = Collation.indexFromCE32(ce32); int defaultCE32 = d.getCE32FromContexts(index); // Default if no suffix match. if(!forward) { // Backward contractions are handled by previousCEUnsafe(). // c has contractions but they were not found. ce32 = defaultCE32; break; } int nextCp; if(skipped == null && numCpFwd < 0) { // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path, // avoiding the function call and the nextSkippedCodePoint() overhead. nextCp = nextCodePoint(); if(nextCp < 0) { // No more text. ce32 = defaultCE32; break; } else if((ce32 & Collation.CONTRACT_NEXT_CCC) != 0 && !CollationFCD.mayHaveLccc(nextCp)) { // All contraction suffixes start with characters with lccc!=0 // but the next code point has lccc==0. backwardNumCodePoints(1); ce32 = defaultCE32; break; } } else { nextCp = nextSkippedCodePoint(); if(nextCp < 0) { // No more text. ce32 = defaultCE32; break; } else if((ce32 & Collation.CONTRACT_NEXT_CCC) != 0 && !CollationFCD.mayHaveLccc(nextCp)) { // All contraction suffixes start with characters with lccc!=0 // but the next code point has lccc==0. backwardNumSkipped(1); ce32 = defaultCE32; break; } } ce32 = nextCE32FromContraction(d, ce32, d.contexts, index + 2, defaultCE32, nextCp); if(ce32 == Collation.NO_CE32) { // CEs from a discontiguous contraction plus the skipped combining marks // have been appended already. return; } break; } case Collation.DIGIT_TAG: if(isNumeric) { appendNumericCEs(ce32, forward); return; } else { // Fetch the non-numeric-collation CE32 and continue. ce32 = d.ce32s[Collation.indexFromCE32(ce32)]; break; } case Collation.U0000_TAG: assert(c == 0); // NUL-terminated input not supported in Java. // Fetch the normal ce32 for U+0000 and continue. ce32 = d.ce32s[0]; break; case Collation.HANGUL_TAG: { int[] jamoCE32s = d.jamoCE32s; c -= Hangul.HANGUL_BASE; int t = c % Hangul.JAMO_T_COUNT; c /= Hangul.JAMO_T_COUNT; int v = c % Hangul.JAMO_V_COUNT; c /= Hangul.JAMO_V_COUNT; if((ce32 & Collation.HANGUL_NO_SPECIAL_JAMO) != 0) { // None of the Jamo CE32s are isSpecialCE32(). // Avoid recursive function calls and per-Jamo tests. ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3); ceBuffer.set(ceBuffer.length, Collation.ceFromCE32(jamoCE32s[c])); ceBuffer.set(ceBuffer.length + 1, Collation.ceFromCE32(jamoCE32s[19 + v])); ceBuffer.length += 2; if(t != 0) { ceBuffer.appendUnsafe(Collation.ceFromCE32(jamoCE32s[39 + t])); } return; } else { // We should not need to compute each Jamo code point. // In particular, there should be no offset or implicit ce32. appendCEsFromCE32(d, Collation.SENTINEL_CP, jamoCE32s[c], forward); appendCEsFromCE32(d, Collation.SENTINEL_CP, jamoCE32s[19 + v], forward); if(t == 0) { return; } // offset 39 = 19 + 21 - 1: // 19 = JAMO_L_COUNT // 21 = JAMO_T_COUNT // -1 = omit t==0 ce32 = jamoCE32s[39 + t]; c = Collation.SENTINEL_CP; break; } } case Collation.LEAD_SURROGATE_TAG: { assert(forward); // Backward iteration should never see lead surrogate code _unit_ data. assert(isLeadSurrogate(c)); char trail; if(Character.isLowSurrogate(trail = handleGetTrailSurrogate())) { c = Character.toCodePoint((char)c, trail); ce32 &= Collation.LEAD_TYPE_MASK; if(ce32 == Collation.LEAD_ALL_UNASSIGNED) { ce32 = Collation.UNASSIGNED_CE32; // unassigned-implicit } else if(ce32 == Collation.LEAD_ALL_FALLBACK || (ce32 = d.getCE32FromSupplementary(c)) == Collation.FALLBACK_CE32) { // fall back to the base data d = d.base; ce32 = d.getCE32FromSupplementary(c); } } else { // c is an unpaired surrogate. ce32 = Collation.UNASSIGNED_CE32; } break; } case Collation.OFFSET_TAG: assert(c >= 0); ceBuffer.append(d.getCEFromOffsetCE32(c, ce32)); return; case Collation.IMPLICIT_TAG: assert(c >= 0); if(isSurrogate(c) && forbidSurrogateCodePoints()) { ce32 = Collation.FFFD_CE32; break; } else { ceBuffer.append(Collation.unassignedCEFromCodePoint(c)); return; } } } ceBuffer.append(Collation.ceFromSimpleCE32(ce32)); } // TODO: Propose widening the UTF16 method. private static final boolean isSurrogate(int c) { return (c & 0xfffff800) == 0xd800; } // TODO: Propose widening the UTF16 method. protected static final boolean isLeadSurrogate(int c) { return (c & 0xfffffc00) == 0xd800; } // TODO: Propose widening the UTF16 method. protected static final boolean isTrailSurrogate(int c) { return (c & 0xfffffc00) == 0xdc00; } // Main lookup trie of the data object. protected final Trie2_32 trie; protected final CollationData data; private final long nextCEFromCE32(CollationData d, int c, int ce32) { --ceBuffer.length; // Undo ceBuffer.incLength(). appendCEsFromCE32(d, c, ce32, true); return ceBuffer.get(cesIndex++); } private final int getCE32FromPrefix(CollationData d, int ce32) { int index = Collation.indexFromCE32(ce32); ce32 = d.getCE32FromContexts(index); // Default if no prefix match. index += 2; // Number of code points read before the original code point. int lookBehind = 0; CharsTrie prefixes = new CharsTrie(d.contexts, index); for(;;) { int c = previousCodePoint(); if(c < 0) { break; } ++lookBehind; BytesTrie.Result match = prefixes.nextForCodePoint(c); if(match.hasValue()) { ce32 = prefixes.getValue(); } if(!match.hasNext()) { break; } } forwardNumCodePoints(lookBehind); return ce32; } private final int nextSkippedCodePoint() { if(skipped != null && skipped.hasNext()) { return skipped.next(); } if(numCpFwd == 0) { return Collation.SENTINEL_CP; } int c = nextCodePoint(); if(skipped != null && !skipped.isEmpty() && c >= 0) { skipped.incBeyond(); } if(numCpFwd > 0 && c >= 0) { --numCpFwd; } return c; } private final void backwardNumSkipped(int n) { if(skipped != null && !skipped.isEmpty()) { n = skipped.backwardNumCodePoints(n); } backwardNumCodePoints(n); if(numCpFwd >= 0) { numCpFwd += n; } } private final int nextCE32FromContraction( CollationData d, int contractionCE32, CharSequence trieChars, int trieOffset, int ce32, int c) { // c: next code point after the original one // Number of code points read beyond the original code point. // Needed for discontiguous contraction matching. int lookAhead = 1; // Number of code points read since the last match (initially only c). int sinceMatch = 1; // Normally we only need a contiguous match, // and therefore need not remember the suffixes state from before a mismatch for retrying. // If we are already processing skipped combining marks, then we do track the state. CharsTrie suffixes = new CharsTrie(trieChars, trieOffset); if(skipped != null && !skipped.isEmpty()) { skipped.saveTrieState(suffixes); } BytesTrie.Result match = suffixes.firstForCodePoint(c); for(;;) { int nextCp; if(match.hasValue()) { ce32 = suffixes.getValue(); if(!match.hasNext() || (c = nextSkippedCodePoint()) < 0) { return ce32; } if(skipped != null && !skipped.isEmpty()) { skipped.saveTrieState(suffixes); } sinceMatch = 1; } else if(match == BytesTrie.Result.NO_MATCH || (nextCp = nextSkippedCodePoint()) < 0) { // No match for c, or partial match (BytesTrie.Result.NO_VALUE) and no further text. // Back up if necessary, and try a discontiguous contraction. if((contractionCE32 & Collation.CONTRACT_TRAILING_CCC) != 0 && // Discontiguous contraction matching extends an existing match. // If there is no match yet, then there is nothing to do. ((contractionCE32 & Collation.CONTRACT_SINGLE_CP_NO_MATCH) == 0 || sinceMatch < lookAhead)) { // The last character of at least one suffix has lccc!=0, // allowing for discontiguous contractions. // UCA S2.1.1 only processes non-starters immediately following // "a match in the table" (sinceMatch=1). if(sinceMatch > 1) { // Return to the state after the last match. // (Return to sinceMatch=0 and re-fetch the first partially-matched character.) backwardNumSkipped(sinceMatch); c = nextSkippedCodePoint(); lookAhead -= sinceMatch - 1; sinceMatch = 1; } if(d.getFCD16(c) > 0xff) { return nextCE32FromDiscontiguousContraction( d, suffixes, ce32, lookAhead, c); } } break; } else { // Continue after partial match (BytesTrie.Result.NO_VALUE) for c. // It does not have a result value, therefore it is not itself "a match in the table". // If a partially-matched c has ccc!=0 then // it might be skipped in discontiguous contraction. c = nextCp; ++sinceMatch; } ++lookAhead; match = suffixes.nextForCodePoint(c); } backwardNumSkipped(sinceMatch); return ce32; } private final int nextCE32FromDiscontiguousContraction( CollationData d, CharsTrie suffixes, int ce32, int lookAhead, int c) { // UCA section 3.3.2 Contractions: // Contractions that end with non-starter characters // are known as discontiguous contractions. // ... discontiguous contractions must be detected in input text // whenever the final sequence of non-starter characters could be rearranged // so as to make a contiguous matching sequence that is canonically equivalent. // UCA: http://www.unicode.org/reports/tr10/#S2.1 // S2.1 Find the longest initial substring S at each point that has a match in the table. // S2.1.1 If there are any non-starters following S, process each non-starter C. // S2.1.2 If C is not blocked from S, find if S + C has a match in the table. // Note: A non-starter in a string is called blocked // if there is another non-starter of the same canonical combining class or zero // between it and the last character of canonical combining class 0. // S2.1.3 If there is a match, replace S by S + C, and remove C. // First: Is a discontiguous contraction even possible? int fcd16 = d.getFCD16(c); assert(fcd16 > 0xff); // The caller checked this already, as a shortcut. int nextCp = nextSkippedCodePoint(); if(nextCp < 0) { // No further text. backwardNumSkipped(1); return ce32; } ++lookAhead; int prevCC = fcd16 & 0xff; fcd16 = d.getFCD16(nextCp); if(fcd16 <= 0xff) { // The next code point after c is a starter (S2.1.1 "process each non-starter"). backwardNumSkipped(2); return ce32; } // We have read and matched (lookAhead-2) code points, // read non-matching c and peeked ahead at nextCp. // Return to the state before the mismatch and continue matching with nextCp. if(skipped == null || skipped.isEmpty()) { if(skipped == null) { skipped = new SkippedState(); } suffixes.reset(); if(lookAhead > 2) { // Replay the partial match so far. backwardNumCodePoints(lookAhead); suffixes.firstForCodePoint(nextCodePoint()); for(int i = 3; i < lookAhead; ++i) { suffixes.nextForCodePoint(nextCodePoint()); } // Skip c (which did not match) and nextCp (which we will try now). forwardNumCodePoints(2); } skipped.saveTrieState(suffixes); } else { // Reset to the trie state before the failed match of c. skipped.resetToTrieState(suffixes); } skipped.setFirstSkipped(c); // Number of code points read since the last match (at this point: c and nextCp). int sinceMatch = 2; c = nextCp; for(;;) { BytesTrie.Result match; // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2) if(prevCC < (fcd16 >> 8) && (match = suffixes.nextForCodePoint(c)).hasValue()) { // "If there is a match, replace S by S + C, and remove C." (S2.1.3) // Keep prevCC unchanged. ce32 = suffixes.getValue(); sinceMatch = 0; skipped.recordMatch(); if(!match.hasNext()) { break; } skipped.saveTrieState(suffixes); } else { // No match for "S + C", skip C. skipped.skip(c); skipped.resetToTrieState(suffixes); prevCC = fcd16 & 0xff; } if((c = nextSkippedCodePoint()) < 0) { break; } ++sinceMatch; fcd16 = d.getFCD16(c); if(fcd16 <= 0xff) { // The next code point after c is a starter (S2.1.1 "process each non-starter"). break; } } backwardNumSkipped(sinceMatch); boolean isTopDiscontiguous = skipped.isEmpty(); skipped.replaceMatch(); if(isTopDiscontiguous && !skipped.isEmpty()) { // We did get a match after skipping one or more combining marks, // and we are not in a recursive discontiguous contraction. // Append CEs from the contraction ce32 // and then from the combining marks that we skipped before the match. c = Collation.SENTINEL_CP; for(;;) { appendCEsFromCE32(d, c, ce32, true); // Fetch CE32s for skipped combining marks from the normal data, with fallback, // rather than from the CollationData where we found the contraction. if(!skipped.hasNext()) { break; } c = skipped.next(); ce32 = getDataCE32(c); if(ce32 == Collation.FALLBACK_CE32) { d = data.base; ce32 = d.getCE32(c); } else { d = data; } // Note: A nested discontiguous-contraction match // replaces consumed combining marks with newly skipped ones // and resets the reading position to the beginning. } skipped.clear(); ce32 = Collation.NO_CE32; // Signal to the caller that the result is in the ceBuffer. } return ce32; } /** * Returns the previous CE when data.isUnsafeBackward(c, isNumeric). */ private final long previousCEUnsafe(int c, UVector32 offsets) { // We just move through the input counting safe and unsafe code points // without collecting the unsafe-backward substring into a buffer and // switching to it. // This is to keep the logic simple. Otherwise we would have to handle // prefix matching going before the backward buffer, switching // to iteration and back, etc. // In the most important case of iterating over a normal string, // reading from the string itself is already maximally fast. // The only drawback there is that after getting the CEs we always // skip backward to the safe character rather than switching out // of a backwardBuffer. // But this should not be the common case for previousCE(), // and correctness and maintainability are more important than // complex optimizations. // Find the first safe character before c. int numBackward = 1; while((c = previousCodePoint()) >= 0) { ++numBackward; if(!data.isUnsafeBackward(c, isNumeric)) { break; } } // Set the forward iteration limit. // Note: This counts code points. // We cannot enforce a limit in the middle of a surrogate pair or similar. numCpFwd = numBackward; // Reset the forward iterator. cesIndex = 0; assert(ceBuffer.length == 0); // Go forward and collect the CEs. int offset = getOffset(); while(numCpFwd > 0) { // nextCE() normally reads one code point. // Contraction matching and digit specials read more and check numCpFwd. --numCpFwd; // Append one or more CEs to the ceBuffer. nextCE(); assert(ceBuffer.get(ceBuffer.length - 1) != Collation.NO_CE); // No need to loop for getting each expansion CE from nextCE(). cesIndex = ceBuffer.length; // However, we need to write an offset for each CE. // This is for CollationElementIterator.getOffset() to return // intermediate offsets from the unsafe-backwards segment. assert(offsets.size() < ceBuffer.length); offsets.addElement(offset); // For an expansion, the offset of each non-initial CE is the limit offset, // consistent with forward iteration. offset = getOffset(); while(offsets.size() < ceBuffer.length) { offsets.addElement(offset); }; } assert(offsets.size() == ceBuffer.length); // End offset corresponding to just after the unsafe-backwards segment. offsets.addElement(offset); // Reset the forward iteration limit // and move backward to before the segment for which we fetched CEs. numCpFwd = -1; backwardNumCodePoints(numBackward); // Use the collected CEs and return the last one. cesIndex = 0; // Avoid cesIndex > ceBuffer.length when that gets decremented. return ceBuffer.get(--ceBuffer.length); } /** * Turns a string of digits (bytes 0..9) * into a sequence of CEs that will sort in numeric order. * * Starts from this ce32's digit value and consumes the following/preceding digits. * The digits string must not be empty and must not have leading zeros. */ private final void appendNumericCEs(int ce32, boolean forward) { // Collect digits. // TODO: Use some kind of a byte buffer? We only store values 0..9. StringBuilder digits = new StringBuilder(); if(forward) { for(;;) { char digit = Collation.digitFromCE32(ce32); digits.append(digit); if(numCpFwd == 0) { break; } int c = nextCodePoint(); if(c < 0) { break; } ce32 = data.getCE32(c); if(ce32 == Collation.FALLBACK_CE32) { ce32 = data.base.getCE32(c); } if(!Collation.hasCE32Tag(ce32, Collation.DIGIT_TAG)) { backwardNumCodePoints(1); break; } if(numCpFwd > 0) { --numCpFwd; } } } else { for(;;) { char digit = Collation.digitFromCE32(ce32); digits.append(digit); int c = previousCodePoint(); if(c < 0) { break; } ce32 = data.getCE32(c); if(ce32 == Collation.FALLBACK_CE32) { ce32 = data.base.getCE32(c); } if(!Collation.hasCE32Tag(ce32, Collation.DIGIT_TAG)) { forwardNumCodePoints(1); break; } } // Reverse the digit string. digits.reverse(); } int pos = 0; do { // Skip leading zeros. while(pos < (digits.length() - 1) && digits.charAt(pos) == 0) { ++pos; } // Write a sequence of CEs for at most 254 digits at a time. int segmentLength = digits.length() - pos; if(segmentLength > 254) { segmentLength = 254; } appendNumericSegmentCEs(digits.subSequence(pos, pos + segmentLength)); pos += segmentLength; } while(pos < digits.length()); } /** * Turns 1..254 digits into a sequence of CEs. * Called by appendNumericCEs() for each segment of at most 254 digits. */ private final void appendNumericSegmentCEs(CharSequence digits) { int length = digits.length(); assert(1 <= length && length <= 254); assert(length == 1 || digits.charAt(0) != 0); long numericPrimary = data.numericPrimary; // Note: We use primary byte values 2..255: digits are not compressible. if(length <= 7) { // Very dense encoding for small numbers. int value = digits.charAt(0); for(int i = 1; i < length; ++i) { value = value * 10 + digits.charAt(i); } // Primary weight second byte values: // 74 byte values 2.. 75 for small numbers in two-byte primary weights. // 40 byte values 76..115 for medium numbers in three-byte primary weights. // 16 byte values 116..131 for large numbers in four-byte primary weights. // 124 byte values 132..255 for very large numbers with 4..127 digit pairs. int firstByte = 2; int numBytes = 74; if(value < numBytes) { // Two-byte primary for 0..73, good for day & month numbers etc. long primary = numericPrimary | ((firstByte + value) << 16); ceBuffer.append(Collation.makeCE(primary)); return; } value -= numBytes; firstByte += numBytes; numBytes = 40; if(value < numBytes * 254) { // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more. long primary = numericPrimary | ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8); ceBuffer.append(Collation.makeCE(primary)); return; } value -= numBytes * 254; firstByte += numBytes; numBytes = 16; if(value < numBytes * 254 * 254) { // Four-byte primary for 10234..1042489=10234+16*254*254-1. long primary = numericPrimary | (2 + value % 254); value /= 254; primary |= (2 + value % 254) << 8; value /= 254; primary |= (firstByte + value % 254) << 16; ceBuffer.append(Collation.makeCE(primary)); return; } // original value > 1042489 } assert(length >= 7); // The second primary byte value 132..255 indicates the number of digit pairs (4..127), // then we generate primary bytes with those pairs. // Omit trailing 00 pairs. // Decrement the value for the last pair. // Set the exponent. 4 pairs.132, 5 pairs.133, ..., 127 pairs.255. int numPairs = (length + 1) / 2; long primary = numericPrimary | ((132 - 4 + numPairs) << 16); // Find the length without trailing 00 pairs. while(digits.charAt(length - 1) == 0 && digits.charAt(length - 2) == 0) { length -= 2; } // Read the first pair. int pair; int pos; if((length & 1) != 0) { // Only "half a pair" if we have an odd number of digits. pair = digits.charAt(0); pos = 1; } else { pair = digits.charAt(0) * 10 + digits.charAt(1); pos = 2; } pair = 11 + 2 * pair; // Add the pairs of digits between pos and length. int shift = 8; while(pos < length) { if(shift == 0) { // Every three pairs/bytes we need to store a 4-byte-primary CE // and start with a new CE with the '0' primary lead byte. primary |= pair; ceBuffer.append(Collation.makeCE(primary)); primary = numericPrimary; shift = 16; } else { primary |= pair << shift; shift -= 8; } pair = 11 + 2 * (digits.charAt(pos) * 10 + digits.charAt(pos + 1)); pos += 2; } primary |= (pair - 1) << shift; ceBuffer.append(Collation.makeCE(primary)); } private CEBuffer ceBuffer; private int cesIndex; private SkippedState skipped; // Number of code points to read forward, or -1. // Used as a forward iteration limit in previousCEUnsafe(). private int numCpFwd; // Numeric collation (CollationSettings.NUMERIC). private boolean isNumeric; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy