com.ibm.wala.util.graph.dominators.Dominators Maven / Gradle / Ivy
Show all versions of com.ibm.wala.util Show documentation
/*
* Copyright (c) 2002 - 2006 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*/
package com.ibm.wala.util.graph.dominators;
import com.ibm.wala.util.collections.EmptyIterator;
import com.ibm.wala.util.collections.HashMapFactory;
import com.ibm.wala.util.collections.HashSetFactory;
import com.ibm.wala.util.collections.Iterator2Iterable;
import com.ibm.wala.util.collections.NonNullSingletonIterator;
import com.ibm.wala.util.debug.Assertions;
import com.ibm.wala.util.graph.AbstractGraph;
import com.ibm.wala.util.graph.EdgeManager;
import com.ibm.wala.util.graph.Graph;
import com.ibm.wala.util.graph.NodeManager;
import com.ibm.wala.util.graph.NumberedGraph;
import com.ibm.wala.util.graph.traverse.DFSDiscoverTimeIterator;
import com.ibm.wala.util.graph.traverse.SlowDFSDiscoverTimeIterator;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import org.jspecify.annotations.Nullable;
/**
* Calculate dominators using Langauer and Tarjan's fastest algorithm. TOPLAS 1(1), July 1979. This
* implementation uses path compression and results in a O(e * alpha(e,n)) complexity, where e is
* the number of edges in the CFG and n is the number of nodes.
*
* Sources: TOPLAS article, Muchnick book
*/
public abstract class Dominators {
static final boolean DEBUG = false;
/** a mapping from DFS number to node */
private final T[] vertex;
/** a convenient place to locate the graph to avoid passing it internally */
protected final Graph G;
/** the root node from which to build dominators */
protected final T root;
/** the number of nodes reachable from the root */
protected int reachableNodeCount = 0;
/**
* @param G The graph
* @param root The root from which to compute dominators
* @throws IllegalArgumentException if G is null
*/
@SuppressWarnings("unchecked")
public Dominators(Graph G, T root) throws IllegalArgumentException {
if (G == null) {
throw new IllegalArgumentException("G is null");
}
this.G = G;
this.root = root;
if (G.getNumberOfNodes() == 0) {
throw new IllegalArgumentException("G has no nodes");
}
this.vertex = (T[]) new Object[G.getNumberOfNodes() + 1];
}
public static Dominators make(Graph G, T root) {
if (G instanceof NumberedGraph) {
return new NumberedDominators<>((NumberedGraph) G, root);
} else {
return new GenericDominators<>(G, root);
}
}
/** is node dominated by master? */
public boolean isDominatedBy(T node, T master) {
for (T ptr = node; ptr != null; ptr = getIdom(ptr))
// use equals() since sometimes the CFGs get
// reconstructed --MS
if (ptr.equals(master)) return true;
return false;
}
/** return the immediate dominator of node */
public @Nullable T getIdom(@Nullable T node) {
return getInfo(node).dominator;
}
/** return an Iterator over all nodes that dominate node */
public Iterator dominators(final T node) {
return new Iterator<>() {
private @Nullable T current = node;
@Override
public void remove() {
throw new UnsupportedOperationException();
}
@Override
public boolean hasNext() {
return current != null;
}
@Override
public T next() {
if (current == null) throw new NoSuchElementException();
T nextNode = current;
current = getIdom(current);
return nextNode;
}
};
}
/** return the dominator tree, which has an edge from n to n' if n dominates n' */
public Graph dominatorTree() {
return new AbstractGraph<>() {
@Override
protected NodeManager getNodeManager() {
return G;
}
@Override
protected EdgeManager getEdgeManager() {
return edges;
}
private final EdgeManager edges =
new EdgeManager<>() {
private final Map> nextMap = HashMapFactory.make();
{
for (T n : G) {
if (n != root) {
T prev = getIdom(n);
Set next = nextMap.get(prev);
if (next == null) nextMap.put(prev, next = HashSetFactory.make(2));
next.add(n);
}
}
}
@Override
public Iterator getPredNodes(@Nullable T N) {
if (N == root) return EmptyIterator.instance();
else return new NonNullSingletonIterator<>(getIdom(N));
}
@Override
public int getPredNodeCount(Object N) {
return (N == root) ? 0 : 1;
}
@Override
public Iterator getSuccNodes(@Nullable Object N) {
if (nextMap.containsKey(N)) return nextMap.get(N).iterator();
else return EmptyIterator.instance();
}
@Override
public int getSuccNodeCount(Object N) {
if (nextMap.containsKey(N)) return nextMap.get(N).size();
else return 0;
}
@Override
public void addEdge(Object src, Object dst) {
Assertions.UNREACHABLE();
}
@Override
public void removeEdge(Object src, Object dst) {
Assertions.UNREACHABLE();
}
@Override
public void removeAllIncidentEdges(Object node) {
Assertions.UNREACHABLE();
}
@Override
public void removeIncomingEdges(Object node) {
// TODO Auto-generated method stub
Assertions.UNREACHABLE();
}
@Override
public void removeOutgoingEdges(Object node) {
// TODO Auto-generated method stub
Assertions.UNREACHABLE();
}
@Override
public boolean hasEdge(@Nullable Object src, @Nullable Object dst) {
// TODO Auto-generated method stub
Assertions.UNREACHABLE();
return false;
}
};
};
}
//
// IMPLEMENTATION -- MAIN ALGORITHM
//
/** analyze dominators */
protected void analyze() {
if (DEBUG) System.out.println("Dominators for " + G);
// Step 1: Perform a DFS numbering
step1();
// Step 2: the heart of the algorithm
step2();
// Step 3: adjust immediate dominators of nodes whose current version of
// the immediate dominators differs from the nodes with the depth-first
// number of the node's semidominator.
step3();
if (DEBUG) System.err.println(this);
}
/**
* The goal of this step is to perform a DFS numbering on the CFG, starting at the root. The exit
* node is not included.
*/
private void step1() {
reachableNodeCount = 0;
DFSDiscoverTimeIterator dfs =
new SlowDFSDiscoverTimeIterator<>(G, root) {
public static final long serialVersionUID = 88831771771711L;
@Override
protected void visitEdge(T from, T to) {
if (DEBUG) System.out.println("visiting edge " + from + " --> " + to);
setParent(to, from);
}
};
while (dfs.hasNext()) {
T node = dfs.next();
assert node != null;
vertex[++reachableNodeCount] = node;
setSemi(node, reachableNodeCount);
if (DEBUG) System.out.println(node + " is DFS number " + reachableNodeCount);
}
}
/** This is the heart of the algorithm. See sources for details. */
private void step2() {
if (DEBUG) {
System.out.println(" ******* Beginning STEP 2 *******\n");
}
// Visit each node in reverse DFS order, except for the root, which
// has number 1
// for i=n downto 2
for (int i = reachableNodeCount; i > 1; i--) {
T node = vertex[i];
if (DEBUG) {
System.out.println(" Processing: " + node + '\n');
}
// visit each predecessor
Iterator extends T> e = G.getPredNodes(node);
while (e.hasNext()) {
T prev = e.next();
if (DEBUG) {
System.out.println(" Inspecting prev: " + prev);
}
T u = EVAL(prev);
// if semi(u) < semi(node) then semi(node) = semi(u)
// u may be part of infinite loop and thus, is unreachable from the exit
// node.
// In this case, it will have a semi value of 0. Thus, we screen for it
// here
if (getSemi(u) != 0 && getSemi(u) < getSemi(node)) {
setSemi(node, getSemi(u));
}
} // while prev
// add "node" to bucket(vertex(semi(node)));
addToBucket(vertex[getSemi(node)], node);
// LINK(parent(node), node)
LINK(getParent(node), node);
// foreach node2 in bucket(parent(node)) do
Iterator bucketEnum = iterateBucket(getParent(node));
while (bucketEnum.hasNext()) {
T node2 = bucketEnum.next();
// u = EVAL(node2)
T u = EVAL(node2);
// if semi(u) < semi(node2) then
// dom(node2) = u
// else
// dom(node2) = parent(node)
if (getSemi(u) < getSemi(node2)) {
setDominator(node2, u);
} else {
setDominator(node2, getParent(node));
}
} // while bucket has more elements
} // for DFSCounter .. 1
} // method
/**
* This method inspects the passed node and returns the following: node, if node is a root of a
* tree in the forest
*
* any vertex, u != r such that otherwise r is the root of the tree containing node and *
* semi(u) is minimum on the path r -> v
*
*
See TOPLAS 1(1), July 1979, p 128 for details.
*
* @param node the node to evaluate
* @return the node as described above
*/
private @Nullable T EVAL(T node) {
if (DEBUG) {
System.out.println(" Evaling " + node);
}
if (getAncestor(node) == null) {
return getLabel(node);
} else {
compress(node);
if (getSemi(getLabel(getAncestor(node))) >= getSemi(getLabel(node))) {
return getLabel(node);
} else {
return getLabel(getAncestor(node));
}
}
}
/**
* This recursive method performs the path compression
*
* @param node node of interest
*/
private void compress(@Nullable T node) {
if (getAncestor(getAncestor(node)) != null) {
compress(getAncestor(node));
if (getSemi(getLabel(getAncestor(node))) < getSemi(getLabel(node))) {
setLabel(node, getLabel(getAncestor(node)));
}
setAncestor(node, getAncestor(getAncestor(node)));
}
}
/**
* Adds edge (node1, node2) to the forest maintained as an auxiliary data structure. This
* implementation uses path compression and results in a O(e * alpha(e,n)) complexity, where e is
* the number of edges in the CFG and n is the number of nodes.
*
* @param node1 a basic node corresponding to the source of the new edge
* @param node2 a basic node corresponding to the source of the new edge
*/
private void LINK(@Nullable T node1, T node2) {
if (DEBUG) {
System.out.println(" Linking " + node1 + " with " + node2);
}
T s = node2;
while (getSemi(getLabel(node2)) < getSemi(getLabel(getChild(s)))) {
if (getSize(s) + getSize(getChild(getChild(s))) >= 2 * getSize(getChild(s))) {
setAncestor(getChild(s), s);
setChild(s, getChild(getChild(s)));
} else {
setSize(getChild(s), getSize(s));
setAncestor(s, getChild(s));
s = getChild(s);
}
}
setLabel(s, getLabel(node2));
setSize(node1, getSize(node1) + getSize(node2));
if (getSize(node1) < 2 * getSize(node2)) {
T tmp = s;
s = getChild(node1);
setChild(node1, tmp);
}
while (s != null) {
setAncestor(s, node1);
s = getChild(s);
}
if (DEBUG) {
System.out.println(" .... done");
}
}
/** This final step sets the final dominator information. */
private void step3() {
// Visit each node in DFS order, except for the root, which has number 1
for (int i = 2; i <= reachableNodeCount; i++) {
T node = vertex[i];
// if dom(node) != vertex[semi(node)]
if (getDominator(node) != vertex[getSemi(node)]) {
// dom(node) = dom(dom(node))
setDominator(node, getDominator(getDominator(node)));
}
}
}
/** LOOK-ASIDE TABLE FOR PER-NODE STATE AND ITS ACCESSORS */
protected final class DominatorInfo {
/*
* The result of this computation: the immediate dominator of this node
*/
private @Nullable T dominator;
/*
* The parent node in the DFS tree used in dominator computation
*/
private @Nullable T parent;
/*
* the ``semi-dominator,'' which starts as the DFS number in step 1
*/
private int semiDominator;
/*
* The buckets used in step 2
*/
private final Set bucket;
/*
* the labels used in the fast union-find structure
*/
private @Nullable T label;
/*
* ancestor for fast union-find data structure
*/
private @Nullable T ancestor;
/*
* the size used by the fast union-find structure
*/
private int size;
/*
* the child used by the fast union-find structure
*/
private @Nullable T child;
DominatorInfo(@Nullable T node) {
semiDominator = 0;
dominator = null;
parent = null;
bucket = HashSetFactory.make();
ancestor = null;
label = node;
size = 1;
child = null;
}
}
/*
* Look-aside table for DominatorInfo objects
*/
protected abstract DominatorInfo getInfo(@Nullable T node);
private Iterator iterateBucket(@Nullable T node) {
return getInfo(node).bucket.iterator();
}
private void addToBucket(T node, T addend) {
getInfo(node).bucket.add(addend);
}
private @Nullable T getDominator(@Nullable T node) {
assert node != null;
return getInfo(node).dominator;
}
private void setDominator(T node, @Nullable T dominator) {
getInfo(node).dominator = dominator;
}
private @Nullable T getParent(T node) {
return getInfo(node).parent;
}
private void setParent(T node, T parent) {
getInfo(node).parent = parent;
}
private @Nullable T getAncestor(@Nullable T node) {
return getInfo(node).ancestor;
}
private void setAncestor(@Nullable T node, @Nullable T ancestor) {
getInfo(node).ancestor = ancestor;
}
private @Nullable T getLabel(@Nullable T node) {
if (node == null) return null;
else return getInfo(node).label;
}
private void setLabel(@Nullable T node, @Nullable T label) {
getInfo(node).label = label;
}
private int getSize(@Nullable T node) {
if (node == null) return 0;
else return getInfo(node).size;
}
private void setSize(@Nullable T node, int size) {
getInfo(node).size = size;
}
private @Nullable T getChild(@Nullable T node) {
return getInfo(node).child;
}
private void setChild(@Nullable T node, @Nullable T child) {
getInfo(node).child = child;
}
private int getSemi(@Nullable T node) {
if (node == null) return 0;
else return getInfo(node).semiDominator;
}
private void setSemi(T node, int semi) {
getInfo(node).semiDominator = semi;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (T node : G) {
sb.append("Dominators of ").append(node).append(":\n");
for (T dom : Iterator2Iterable.make(dominators(node)))
sb.append(" ").append(dom).append('\n');
sb.append('\n');
}
return sb.toString();
}
}