org.jpedal.utils.Sorts Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of OpenViewerFX Show documentation
Show all versions of OpenViewerFX Show documentation
Open Source (LGPL) JavaFX PDF Viewer
/*
* ===========================================
* Java Pdf Extraction Decoding Access Library
* ===========================================
*
* Project Info: http://www.idrsolutions.com
* Help section for developers at http://www.idrsolutions.com/support/
*
* (C) Copyright 1997-2017 IDRsolutions and Contributors.
*
* This file is part of JPedal/JPDF2HTML5
*
@LICENSE@
*
* ---------------
* Sorts.java
* ---------------
*/
package org.jpedal.utils;
/**
* repository for general sorting routines
* (needs other sort classes adding in)
*
This class is NOT part of the API
*/
public class Sorts {
//////////////////////////////////////////////////////////////////////
/**
* quick sort list on 1 value with names as int
* primary is sorted into ascending order and names is joined to primary.
* so if primary[i] is moved to primary[j], then names[i] is moved to names[j]
*/
//#####################################################
private static void sift(final int[] primary, final int[] names, final int left, final int right) {
// variables for sift moved to reduce initialization
int currentLeft;
// variables for sift moved to reduce initialization
final int primaryTMP;
// variables for sift moved to reduce initialization
final int namesTMP;
// variables for sift moved to reduce initialization
int childL;
//assign left to local
currentLeft = left;
//temp store of left item
primaryTMP = primary[currentLeft];
//temp store of left item
namesTMP = names[currentLeft];
//Left child node of currentLeft
childL = 2 * left + 1;
//Find a[left]'s larger child
if ((childL < right) && (primary[childL] < primary[childL + 1])) {
childL += 1;
}
//assert: a[childL] is larger child
//sift temp to be in correct place in highest on leftMost and arranged as tree
while ((childL <= right) && (primaryTMP < primary[childL])) {
//assign highest item to leftmost position
primary[currentLeft] = primary[childL];
names[currentLeft] = names[childL];
currentLeft = childL;
childL = 2 * childL + 1;
//pick highest child
if ((childL < right) && (primary[childL] < primary[childL + 1])) {
childL += 1;
}
}
//put temp in the correct place in the sub-heap
primary[currentLeft] = primaryTMP;
names[currentLeft] = namesTMP;
//assert: a[left] is the root a sub-heap.
}
/**
* sorts as a tree like structure in array representation
*/
public static final int[] quicksort(final int[] primaryIN, final int[] names) {
/* copy so we don't sort original */
final int items = primaryIN.length;
final int[] primary = new int[items];
System.arraycopy(primaryIN, 0, primary, 0, items);
//pointer to left side of unsorted array
int left = primary.length / 2;
//pointer to right side of unsorted array
int right = primary.length - 1;
//sift through array into a heap
while (left > 0) {
left -= 1;
//go through tree starting with leaves and going up
sift(primary, names, left, right);
}
//rearrange heap into a sorted array
while (right > 0) {
//assert: largest unsorted value is at a[0]
//move largest item to right end
final int tempA = primary[0];
final int tempB = names[0];
primary[0] = primary[right];
names[0] = names[right];
primary[right] = tempA;
names[right] = tempB;
//assert: a[right..] is sorted
//right is largest and sorted decrement it
right -= 1;
//get largest value in the tree to the leftMost position
sift(primary, names, left, right);
}
//assert: right==0, therefore a[0..] is all sorted
return names;
}
//#####################################################
/**
* quick sort list on 2 values with names as int
*/
public static final int[] quicksort(final int[] primary, final int[] secondary, final int[] names) {
final int items = names.length;
//copy items so we don't sort originals
final int[] primary_values = new int[items];
final int[] secondary_values = new int[items];
for (int i = 0; i < items; i++) {
primary_values[i] = primary[i];
secondary_values[i] = secondary[i];
}
final int start = 0;
int i, j, k;
int temp, temp2;
int temp_name;
for (i = start + 1; i < items; i++) {
temp = primary_values[i];
temp2 = secondary_values[i];
temp_name = names[i];
k = start;
for (j = i - 1; j >= start; j--) {
if ((temp < primary_values[j]) | ((temp == primary_values[j]) & (temp2 < secondary_values[j]))) {
primary_values[j + 1] = primary_values[j];
secondary_values[j + 1] = secondary_values[j];
names[j + 1] = names[j];
} else {
k = j + 1;
break;
}
}
primary_values[k] = temp;
secondary_values[k] = temp2;
names[k] = temp_name;
}
//return the sorted list
return names;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy