org.jpedal.sun.PrintfFormat Maven / Gradle / Ivy
Show all versions of OpenViewerFX Show documentation
/*
* ===========================================
* Java Pdf Extraction Decoding Access Library
* ===========================================
*
* Project Info: http://www.idrsolutions.com
* Help section for developers at http://www.idrsolutions.com/support/
*
* (C) Copyright 1997-2017 IDRsolutions and Contributors.
*
* This file is part of JPedal/JPDF2HTML5
*
@LICENSE@
*
* ---------------
* PrintfFormat.java
* ---------------
*/
package org.jpedal.sun;
//
// (c) 2000 Sun Microsystems, Inc.
// ALL RIGHTS RESERVED
//
// License Grant-
//
//
// Permission to use, copy, modify, and distribute this Software and its
// documentation for NON-COMMERCIAL or COMMERCIAL purposes and without fee is
// hereby granted.
//
// This Software is provided "AS IS". All express warranties, including any
// implied warranty of merchantability, satisfactory quality, fitness for a
// particular purpose, or non-infringement, are disclaimed, except to the extent
// that such disclaimers are held to be legally invalid.
//
// You acknowledge that Software is not designed, licensed or intended for use in
// the design, construction, operation or maintenance of any nuclear facility
// ("High Risk Activities"). Sun disclaims any express or implied warranty of
// fitness for such uses.
//
// Please refer to the file http://www.sun.com/policies/trademarks/ for further
// important trademark information and to
// http://java.sun.com/nav/business/index.html for further important licensing
// information for the Java Technology.
//
import java.text.DecimalFormatSymbols;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Locale;
/**
* PrintfFormat allows the formatting of an array of
* objects embedded within a string. Primitive types
* must be passed using wrapper types. The formatting
* is controlled by a control string.
*
* A control string is a Java string that contains a
* control specification. The control specification
* starts at the first percent sign (%) in the string,
* provided that this percent sign
*
* - is not escaped protected by a matching % or is
* not an escape % character,
* - is not at the end of the format string, and
*
precedes a sequence of characters that parses as
* a valid control specification.
*
*
*
* A control specification usually takes the form:
*
% ['-+ #0]* [0..9]* { . [0..9]* }+
* { [hlL] }+ [idfgGoxXeEcs]
*
* There are variants of this basic form that are
* discussed below.
*
* The format is composed of zero or more directives
* defined as follows:
*
* - ordinary characters, which are simply copied to
* the output stream;
* - escape sequences, which represent non-graphic
* characters; and
* - conversion specifications, each of which
* results in the fetching of zero or more arguments.
*
*
* The results are undefined if there are insufficient
* arguments for the format. Usually an unchecked
* exception will be thrown. If the format is
* exhausted while arguments remain, the excess
* arguments are evaluated but are otherwise ignored.
* In format strings containing the % form of
* conversion specifications, each argument in the
* argument list is used exactly once.
*
* Conversions can be applied to the n
th
* argument after the format in the argument list,
* rather than to the next unused argument. In this
* case, the conversion characer % is replaced by the
* sequence %n
$, where n
is
* a decimal integer giving the position of the
* argument in the argument list.
*
* In format strings containing the %n
$
* form of conversion specifications, each argument
* in the argument list is used exactly once.
*
*
Escape Sequences
*
* The following table lists escape sequences and
* associated actions on display devices capable of
* the action.
*
* Sequence
* Name
* Description
* \\ backlash None.
*
* \a alert Attempts to alert
* the user through audible or visible
* notification.
*
* \b backspace Moves the
* printing position to one column before
* the current position, unless the
* current position is the start of a line.
*
* \f form-feed Moves the
* printing position to the initial
* printing position of the next logical
* page.
*
* \n newline Moves the
* printing position to the start of the
* next line.
*
* \r carriage-return Moves
* the printing position to the start of
* the current line.
*
* \t tab Moves the printing
* position to the next implementation-
* defined horizontal tab position.
*
* \v vertical-tab Moves the
* printing position to the start of the
* next implementation-defined vertical
* tab position.
*
*
* Conversion Specifications
*
* Each conversion specification is introduced by
* the percent sign character (%). After the character
* %, the following appear in sequence:
*
* Zero or more flags (in any order), which modify the
* meaning of the conversion specification.
*
* An optional minimum field width. If the converted
* value has fewer characters than the field width, it
* will be padded with spaces by default on the left;
* t will be padded on the right, if the left-
* adjustment flag (-), described below, is given to
* the field width. The field width takes the form
* of a decimal integer. If the conversion character
* is s, the field width is the the minimum number of
* characters to be printed.
*
* An optional precision that gives the minumum number
* of digits to appear for the d, i, o, x or X
* conversions (the field is padded with leading
* zeros); the number of digits to appear after the
* radix character for the e, E, and f conversions,
* the maximum number of significant digits for the g
* and G conversions; or the maximum number of
* characters to be written from a string is s and S
* conversions. The precision takes the form of an
* optional decimal digit string, where a null digit
* string is treated as 0. If a precision appears
* with a c conversion character the precision is
* ignored.
*
*
* An optional h specifies that a following d, i, o,
* x, or X conversion character applies to a type
* short argument (the argument will be promoted
* according to the integral promotions and its value
* converted to type short before printing).
*
* An optional l (ell) specifies that a following
* d, i, o, x, or X conversion character applies to a
* type long argument.
*
* A field width or precision may be indicated by an
* asterisk (*) instead of a digit string. In this
* case, an integer argument supplised the field width
* precision. The argument that is actually converted
* is not fetched until the conversion letter is seen,
* so the the arguments specifying field width or
* precision must appear before the argument (if any)
* to be converted. If the precision argument is
* negative, it will be changed to zero. A negative
* field width argument is taken as a - flag, followed
* by a positive field width.
*
* In format strings containing the %n
$
* form of a conversion specification, a field width
* or precision may be indicated by the sequence
* *m
$, where m is a decimal integer
* giving the position in the argument list (after the
* format argument) of an integer argument containing
* the field width or precision.
*
* The format can contain either numbered argument
* specifications (that is, %n
$ and
* *m
$), or unnumbered argument
* specifications (that is % and *), but normally not
* both. The only exception to this is that %% can
* be mixed with the %n
$ form. The
* results of mixing numbered and unnumbered argument
* specifications in a format string are undefined.
*
*
Flag Characters
*
* The flags and their meanings are:
*
* - '
- integer portion of the result of a
* decimal conversion (%i, %d, %f, %g, or %G) will
* be formatted with thousands' grouping
* characters. For other conversions the flag
* is ignored. The non-monetary grouping
* character is used.
*
- -
- result of the conversion is left-justified
* within the field. (It will be right-justified
* if this flag is not specified).
*
- +
- result of a signed conversion always
* begins with a sign (+ or -). (It will begin
* with a sign only when a negative value is
* converted if this flag is not specified.)
*
- <space>
- If the first character of a
* signed conversion is not a sign, a space
* character will be placed before the result.
* This means that if the space character and +
* flags both appear, the space flag will be
* ignored.
*
- #
- value is to be converted to an alternative
* form. For c, d, i, and s conversions, the flag
* has no effect. For o conversion, it increases
* the precision to force the first digit of the
* result to be a zero. For x or X conversion, a
* non-zero result has 0x or 0X prefixed to it,
* respectively. For e, E, f, g, and G
* conversions, the result always contains a radix
* character, even if no digits follow the radix
* character (normally, a decimal point appears in
* the result of these conversions only if a digit
* follows it). For g and G conversions, trailing
* zeros will not be removed from the result as
* they normally are.
*
- 0
- d, i, o, x, X, e, E, f, g, and G
* conversions, leading zeros (following any
* indication of sign or base) are used to pad to
* the field width; no space padding is
* performed. If the 0 and - flags both appear,
* the 0 flag is ignored. For d, i, o, x, and X
* conversions, if a precision is specified, the
* 0 flag will be ignored. For c conversions,
* the flag is ignored.
*
*
*
Conversion Characters
*
* Each conversion character results in fetching zero
* or more arguments. The results are undefined if
* there are insufficient arguments for the format.
* Usually, an unchecked exception will be thrown.
* If the format is exhausted while arguments remain,
* the excess arguments are ignored.
*
*
* The conversion characters and their meanings are:
*
*
* - d,i
- The int argument is converted to a
* signed decimal in the style [-]dddd. The
* precision specifies the minimum number of
* digits to appear; if the value being
* converted can be represented in fewer
* digits, it will be expanded with leading
* zeros. The default precision is 1. The
* result of converting 0 with an explicit
* precision of 0 is no characters.
*
- o
- The int argument is converted to unsigned
* octal format in the style ddddd. The
* precision specifies the minimum number of
* digits to appear; if the value being
* converted can be represented in fewer
* digits, it will be expanded with leading
* zeros. The default precision is 1. The
* result of converting 0 with an explicit
* precision of 0 is no characters.
*
- x
- The int argument is converted to unsigned
* hexadecimal format in the style dddd; the
* letters abcdef are used. The precision
* specifies the minimum numberof digits to
* appear; if the value being converted can be
* represented in fewer digits, it will be
* expanded with leading zeros. The default
* precision is 1. The result of converting 0
* with an explicit precision of 0 is no
* characters.
*
- X
- Behaves the same as the x conversion
* character except that letters ABCDEF are
* used instead of abcdef.
*
- f
- The floating point number argument is
* written in decimal notation in the style
* [-]ddd.ddd, where the number of digits after
* the radix character (shown here as a decimal
* point) is equal to the precision
* specification. A Locale is used to determine
* the radix character to use in this format.
* If the precision is omitted from the
* argument, six digits are written after the
* radix character; if the precision is
* explicitly 0 and the # flag is not specified,
* no radix character appears. If a radix
* character appears, at least 1 digit appears
* before it. The value is rounded to the
* appropriate number of digits.
*
- e,E
- The floating point number argument is
* written in the style [-]d.ddde{+-}dd
* (the symbols {+-} indicate either a plus or
* minus sign), where there is one digit before
* the radix character (shown here as a decimal
* point) and the number of digits after it is
* equal to the precision. A Locale is used to
* determine the radix character to use in this
* format. When the precision is missing, six
* digits are written after the radix character;
* if the precision is 0 and the # flag is not
* specified, no radix character appears. The
* E conversion will produce a number with E
* instead of e introducing the exponent. The
* exponent always contains at least two digits.
* However, if the value to be written requires
* an exponent greater than two digits,
* additional exponent digits are written as
* necessary. The value is rounded to the
* appropriate number of digits.
*
- g,G
- The floating point number argument is
* written in style f or e (or in sytle E in the
* case of a G conversion character), with the
* precision specifying the number of
* significant digits. If the precision is
* zero, it is taken as one. The style used
* depends on the value converted: style e
* (or E) will be used only if the exponent
* resulting from the conversion is less than
* -4 or greater than or equal to the precision.
* Trailing zeros are removed from the result.
* A radix character appears only if it is
* followed by a digit.
*
- c,C
- The integer argument is converted to a
* char and the result is written.
*
*
- s,S
- The argument is taken to be a string and
* bytes from the string are written until the
* end of the string or the number of bytes
* indicated by the precision specification of
* the argument is reached. If the precision
* is omitted from the argument, it is taken to
* be infinite, so all characters up to the end
* of the string are written.
*
- %
- Write a % character; no argument is
* converted.
*
*
* If a conversion specification does not match one of
* the above forms, an IllegalArgumentException is
* thrown and the instance of PrintfFormat is not
* created.
*
* If a floating point value is the internal
* representation for infinity, the output is
* [+]Infinity, where Infinity is either Infinity or
* Inf, depending on the desired output string length.
* Printing of the sign follows the rules described
* above.
*
* If a floating point value is the internal
* representation for "not-a-number," the output is
* [+]NaN. Printing of the sign follows the rules
* described above.
*
* In no case does a non-existent or small field width
* cause truncation of a field; if the result of a
* conversion is wider than the field width, the field
* is simply expanded to contain the conversion result.
*
*
* The behavior is like printf. One exception is that
* the minimum number of exponent digits is 3 instead
* of 2 for e and E formats when the optional L is used
* before the e, E, g, or G conversion character. The
* optional L does not imply conversion to a long long
* double.
*
* The biggest divergence from the C printf
* specification is in the use of 16 bit characters.
* This allows the handling of characters beyond the
* small ASCII character set and allows the utility to
* interoperate correctly with the rest of the Java
* runtime environment.
*
* Omissions from the C printf specification are
* numerous. All the known omissions are present
* because Java never uses bytes to represent
* characters and does not have pointers:
*
* - %c is the same as %C.
*
- %s is the same as %S.
*
- u, p, and n conversion characters.
*
- %ws format.
*
- h modifier applied to an n conversion character.
*
- l (ell) modifier applied to the c, n, or s
* conversion characters.
*
- ll (ell ell) modifier to d, i, o, u, x, or X
* conversion characters.
*
- ll (ell ell) modifier to an n conversion
* character.
*
- c, C, d,i,o,u,x, and X conversion characters
* apply to Byte, Character, Short, Integer, Long
* types.
*
- f, e, E, g, and G conversion characters apply
* to Float and Double types.
*
- s and S conversion characters apply to String
* types.
*
- All other reference types can be formatted
* using the s or S conversion characters only.
*
*
* Most of this specification is quoted from the Unix
* man page for the sprintf utility.
*
* @author Allan Jacobs
* @version 1
* Release 1: Initial release.
* Release 2: Asterisk field widths and precisions
* %n$ and *m$
* Bug fixes
* g format fix (2 digits in e form corrupt)
* rounding in f format implemented
* round up when digit not printed is 5
* formatting of -0.0f
* round up/down when last digits are 50000...
*/
@SuppressWarnings("ALL")
public class PrintfFormat {
/**
* Constructs an array of control specifications
* possibly preceded, separated, or followed by
* ordinary strings. Control strings begin with
* unpaired percent signs. A pair of successive
* percent signs designates a single percent sign in
* the format.
*
* @param fmtArg Control string.
* @throws IllegalArgumentException if the control
* string is null, zero length, or otherwise
* malformed.
*/
public PrintfFormat(final String fmtArg)
throws IllegalArgumentException {
this(Locale.getDefault(), fmtArg);
}
/**
* Constructs an array of control specifications
* possibly preceded, separated, or followed by
* ordinary strings. Control strings begin with
* unpaired percent signs. A pair of successive
* percent signs designates a single percent sign in
* the format.
*
* @param fmtArg Control string.
* @throws IllegalArgumentException if the control
* string is null, zero length, or otherwise
* malformed.
*/
public PrintfFormat(final Locale locale, final String fmtArg)
throws IllegalArgumentException {
dfs = new DecimalFormatSymbols(locale);
int ePos;
ConversionSpecification sFmt;
String unCS = this.nonControl(fmtArg, 0);
if (unCS != null) {
sFmt = new ConversionSpecification();
sFmt.setLiteral(unCS);
vFmt.add(sFmt);
}
while (cPos != -1 && cPos < fmtArg.length()) {
for (ePos = cPos + 1; ePos < fmtArg.length();
ePos++) {
final char c;
c = fmtArg.charAt(ePos);
if (c == 'i') {
break;
}
if (c == 'd') {
break;
}
if (c == 'f') {
break;
}
if (c == 'g') {
break;
}
if (c == 'G') {
break;
}
if (c == 'o') {
break;
}
if (c == 'x') {
break;
}
if (c == 'X') {
break;
}
if (c == 'e') {
break;
}
if (c == 'E') {
break;
}
if (c == 'c') {
break;
}
if (c == 's') {
break;
}
if (c == '%') {
break;
}
}
ePos = Math.min(ePos + 1, fmtArg.length());
sFmt = new ConversionSpecification(
fmtArg.substring(cPos, ePos));
vFmt.add(sFmt);
unCS = this.nonControl(fmtArg, ePos);
if (unCS != null) {
sFmt = new ConversionSpecification();
sFmt.setLiteral(unCS);
vFmt.add(sFmt);
}
}
}
/**
* Return a substring starting at
* start
and ending at either the end
* of the String s
, the next unpaired
* percent sign, or at the end of the String if the
* last character is a percent sign.
*
* @param s Control string.
* @param start Position in the string
* s
to begin looking for the start
* of a control string.
* @return the substring from the start position
* to the beginning of the control string.
*/
private String nonControl(final String s, final int start) {
//String ret="";
cPos = s.indexOf('%', start);
if (cPos == -1) {
cPos = s.length();
}
return s.substring(start, cPos);
}
/**
* Format an array of objects. Byte, Short,
* Integer, Long, Float, Double, and Character
* arguments are treated as wrappers for primitive
* types.
*
* @param o The array of objects to format.
* @return The formatted String.
*/
public String sprintf(final Object[] o) {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
int i = 0;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
if (cs.isPositionalSpecification()) {
i = cs.getArgumentPosition() - 1;
if (cs.isPositionalFieldWidth()) {
final int ifw = cs.getArgumentPositionForFieldWidth() - 1;
cs.setFieldWidthWithArg((Integer) o[ifw]);
}
if (cs.isPositionalPrecision()) {
final int ipr = cs.getArgumentPositionForPrecision() - 1;
cs.setPrecisionWithArg((Integer) o[ipr]);
}
} else {
if (cs.isVariableFieldWidth()) {
cs.setFieldWidthWithArg((Integer) o[i]);
i++;
}
if (cs.isVariablePrecision()) {
cs.setPrecisionWithArg((Integer) o[i]);
i++;
}
}
if (o[i] instanceof Byte) {
sb.append(cs.internalsprintf(
((Number) o[i]).byteValue()));
} else if (o[i] instanceof Short) {
sb.append(cs.internalsprintf(
((Number) o[i]).shortValue()));
} else if (o[i] instanceof Integer) {
sb.append(cs.internalsprintf(
((Number) o[i]).intValue()));
} else if (o[i] instanceof Long) {
sb.append(cs.internalsprintf(
((Number) o[i]).longValue()));
} else if (o[i] instanceof Float) {
sb.append(cs.internalsprintf(
((Number) o[i]).floatValue()));
} else if (o[i] instanceof Double) {
sb.append(cs.internalsprintf(
((Number) o[i]).doubleValue()));
} else if (o[i] instanceof Character) {
sb.append(cs.internalsprintf(
((Character) o[i]).charValue()));
} else if (o[i] instanceof String) {
sb.append(cs.internalsprintf(
(String) o[i]));
} else {
sb.append(cs.internalsprintf(
o[i]));
}
if (!cs.isPositionalSpecification()) {
i++;
}
}
}
return sb.toString();
}
/**
* Format nothing. Just use the control string.
*
* @return the formatted String.
*/
public String sprintf() {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
}
}
return sb.toString();
}
/**
* Format an int.
*
* @param x The int to format.
* @return The formatted String.
* @throws IllegalArgumentException if the
* conversion character is f, e, E, g, G, s,
* or S.
*/
public String sprintf(final int x)
throws IllegalArgumentException {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
sb.append(cs.internalsprintf(x));
}
}
return sb.toString();
}
/**
* Format an long.
*
* @param x The long to format.
* @return The formatted String.
* @throws IllegalArgumentException if the
* conversion character is f, e, E, g, G, s,
* or S.
*/
public String sprintf(final long x)
throws IllegalArgumentException {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
sb.append(cs.internalsprintf(x));
}
}
return sb.toString();
}
/**
* Format a double.
*
* @param x The double to format.
* @return The formatted String.
* @throws IllegalArgumentException if the
* conversion character is c, C, s, S,
* d, d, x, X, or o.
*/
public String sprintf(final double x)
throws IllegalArgumentException {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
sb.append(cs.internalsprintf(x));
}
}
return sb.toString();
}
/**
* Format a String.
*
* @param x The String to format.
* @return The formatted String.
* @throws IllegalArgumentException if the
* conversion character is neither s nor S.
*/
public String sprintf(final String x)
throws IllegalArgumentException {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
sb.append(cs.internalsprintf(x));
}
}
return sb.toString();
}
/**
* Format an Object. Convert wrapper types to
* their primitive equivalents and call the
* appropriate internal formatting method. Convert
* Strings using an internal formatting method for
* Strings. Otherwise use the default formatter
* (use toString).
*
* @param x the Object to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is inappropriate for
* formatting an unwrapped value.
*/
public String sprintf(final Object x)
throws IllegalArgumentException {
final Iterator e = vFmt.iterator();
ConversionSpecification cs;
char c;
final StringBuilder sb = new StringBuilder();
while (e.hasNext()) {
cs = e.next();
c = cs.getConversionCharacter();
if (c == '\0') {
sb.append(cs.getLiteral());
} else if (c == '%') {
sb.append('%');
} else {
if (x instanceof Byte) {
sb.append(cs.internalsprintf(
((Number) x).byteValue()));
} else if (x instanceof Short) {
sb.append(cs.internalsprintf(
((Number) x).shortValue()));
} else if (x instanceof Integer) {
sb.append(cs.internalsprintf(
((Number) x).intValue()));
} else if (x instanceof Long) {
sb.append(cs.internalsprintf(
((Number) x).longValue()));
} else if (x instanceof Float) {
sb.append(cs.internalsprintf(
((Number) x).floatValue()));
} else if (x instanceof Double) {
sb.append(cs.internalsprintf(
((Number) x).doubleValue()));
} else if (x instanceof Character) {
sb.append(cs.internalsprintf(
((Character) x).charValue()));
} else if (x instanceof String) {
sb.append(cs.internalsprintf(
(String) x));
} else {
sb.append(cs.internalsprintf(x));
}
}
}
return sb.toString();
}
/**
*
* ConversionSpecification allows the formatting of
* a single primitive or object embedded within a
* string. The formatting is controlled by a
* format string. Only one Java primitive or
* object can be formatted at a time.
*
* A format string is a Java string that contains
* a control string. The control string starts at
* the first percent sign (%) in the string,
* provided that this percent sign
*
* - is not escaped protected by a matching % or
* is not an escape % character,
*
- is not at the end of the format string, and
*
- precedes a sequence of characters that parses
* as a valid control string.
*
*
* A control string takes the form:
*
% ['-+ #0]* [0..9]* { . [0..9]* }+
* { [hlL] }+ [idfgGoxXeEcs]
*
*
* The behavior is like printf. One (hopefully the
* only) exception is that the minimum number of
* exponent digits is 3 instead of 2 for e and E
* formats when the optional L is used before the
* e, E, g, or G conversion character. The
* optional L does not imply conversion to a long
* long double.
*/
private class ConversionSpecification {
/**
* Constructor. Used to prepare an instance
* to hold a literal, not a control string.
*/
ConversionSpecification() {
}
/**
* Constructor for a conversion specification.
* The argument must begin with a % and end
* with the conversion character for the
* conversion specification.
*
* @param fmtArg String specifying the
* conversion specification.
* @throws IllegalArgumentException if the
* input string is null, zero length, or
* otherwise malformed.
*/
ConversionSpecification(final String fmtArg)
throws IllegalArgumentException {
if (fmtArg == null) {
throw new NullPointerException();
}
if (fmtArg.isEmpty()) {
throw new IllegalArgumentException(
"Control strings must have positive" +
" lengths.");
}
if (fmtArg.charAt(0) == '%') {
fmt = fmtArg;
pos = 1;
setArgPosition();
setFlagCharacters();
setFieldWidth();
setPrecision();
setOptionalHL();
if (setConversionCharacter()) {
if (pos == fmtArg.length()) {
if (leadingZeros && leftJustify) {
leadingZeros = false;
}
if (precisionSet && leadingZeros) {
if (conversionCharacter == 'd'
|| conversionCharacter == 'i'
|| conversionCharacter == 'o'
|| conversionCharacter == 'x') {
leadingZeros = false;
}
}
} else {
throw new IllegalArgumentException(
"Malformed conversion specification=" +
fmtArg);
}
} else {
throw new IllegalArgumentException(
"Malformed conversion specification=" +
fmtArg);
}
} else {
throw new IllegalArgumentException(
"Control strings must begin with %.");
}
}
/**
* Set the String for this instance.
*
* @param s the String to store.
*/
void setLiteral(final String s) {
fmt = s;
}
/**
* Get the String for this instance. Translate
* any escape sequences.
*
* @return s the stored String.
*/
String getLiteral() {
return fmt;
}
/**
* Get the conversion character that tells what
* type of control character this instance has.
*
* @return the conversion character.
*/
char getConversionCharacter() {
return conversionCharacter;
}
/**
* Check whether the specifier has a variable
* field width that is going to be set by an
* argument.
*
* @return true
if the conversion
* uses an * field width; otherwise
* false
.
*/
boolean isVariableFieldWidth() {
return variableFieldWidth;
}
/**
* Set the field width with an argument. A
* negative field width is taken as a - flag
* followed by a positive field width.
*
* @param fw the field width.
*/
void setFieldWidthWithArg(final int fw) {
if (fw < 0) {
leftJustify = true;
}
fieldWidthSet = true;
fieldWidth = Math.abs(fw);
}
/**
* Check whether the specifier has a variable
* precision that is going to be set by an
* argument.
*
* @return true
if the conversion
* uses an * precision; otherwise
* false
.
*/
boolean isVariablePrecision() {
return variablePrecision;
}
/**
* Set the precision with an argument. A
* negative precision will be changed to zero.
*
* @param pr the precision.
*/
void setPrecisionWithArg(final int pr) {
precisionSet = true;
precision = Math.max(pr, 0);
}
/**
* Format an int argument using this conversion
* specification.
*
* @param s the int to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is f, e, E, g, or G.
*/
String internalsprintf(final int s)
throws IllegalArgumentException {
final String s2;
switch (conversionCharacter) {
case 'd':
case 'i':
if (optionalh) {
s2 = printDFormat((short) s);
} else if (optionall) {
s2 = printDFormat((long) s);
} else {
s2 = printDFormat(s);
}
break;
case 'x':
case 'X':
if (optionalh) {
s2 = printXFormat((short) s);
} else if (optionall) {
s2 = printXFormat((long) s);
} else {
s2 = printXFormat(s);
}
break;
case 'o':
if (optionalh) {
s2 = printOFormat((short) s);
} else if (optionall) {
s2 = printOFormat((long) s);
} else {
s2 = printOFormat(s);
}
break;
case 'c':
case 'C':
s2 = printCFormat((char) s);
break;
default:
throw new IllegalArgumentException(
"Cannot format a int with a format using a " +
conversionCharacter +
" conversion character.");
}
return s2;
}
/**
* Format a long argument using this conversion
* specification.
*
* @param s the long to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is f, e, E, g, or G.
*/
String internalsprintf(final long s)
throws IllegalArgumentException {
final String s2;
switch (conversionCharacter) {
case 'd':
case 'i':
if (optionalh) {
s2 = printDFormat((short) s);
} else if (optionall) {
s2 = printDFormat(s);
} else {
s2 = printDFormat((int) s);
}
break;
case 'x':
case 'X':
if (optionalh) {
s2 = printXFormat((short) s);
} else if (optionall) {
s2 = printXFormat(s);
} else {
s2 = printXFormat((int) s);
}
break;
case 'o':
if (optionalh) {
s2 = printOFormat((short) s);
} else if (optionall) {
s2 = printOFormat(s);
} else {
s2 = printOFormat((int) s);
}
break;
case 'c':
case 'C':
s2 = printCFormat((char) s);
break;
default:
throw new IllegalArgumentException(
"Cannot format a long with a format using a " +
conversionCharacter + " conversion character.");
}
return s2;
}
/**
* Format a double argument using this conversion
* specification.
*
* @param s the double to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is c, C, s, S, i, d,
* x, X, or o.
*/
String internalsprintf(final double s)
throws IllegalArgumentException {
final String s2;
switch (conversionCharacter) {
case 'f':
s2 = printFFormat(s);
break;
case 'E':
case 'e':
s2 = printEFormat(s);
break;
case 'G':
case 'g':
s2 = printGFormat(s);
break;
default:
throw new IllegalArgumentException("Cannot " +
"format a double with a format using a " +
conversionCharacter + " conversion character.");
}
return s2;
}
/**
* Format a String argument using this conversion
* specification.
*
* @param s the String to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is neither s nor S.
*/
String internalsprintf(final String s)
throws IllegalArgumentException {
final String s2;
if (conversionCharacter == 's'
|| conversionCharacter == 'S') {
s2 = printSFormat(s);
} else {
throw new IllegalArgumentException("Cannot " +
"format a String with a format using a " +
conversionCharacter + " conversion character.");
}
return s2;
}
/**
* Format an Object argument using this conversion
* specification.
*
* @param s the Object to format.
* @return the formatted String.
* @throws IllegalArgumentException if the
* conversion character is neither s nor S.
*/
String internalsprintf(final Object s) {
final String s2;
if (conversionCharacter == 's'
|| conversionCharacter == 'S') {
s2 = printSFormat(s.toString());
} else {
throw new IllegalArgumentException(
"Cannot format a String with a format using" +
" a " + conversionCharacter +
" conversion character.");
}
return s2;
}
/**
* For f format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both
* a '+' and a ' ' are specified, the blank flag
* is ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the number of digits
* to appear after the radix character. Padding is
* with trailing 0s.
*/
private char[] fFormatDigits(final double x) {
// int defaultDigits=6;
String sx; //sxOut;
int i, j, k;
final int n1In;
final int n2In;
int expon = 0;
boolean minusSign = false;
if (x > 0.0) {
sx = Double.toString(x);
} else if (x < 0.0) {
sx = Double.toString(-x);
minusSign = true;
} else {
sx = Double.toString(x);
if (sx.charAt(0) == '-') {
minusSign = true;
sx = sx.substring(1);
}
}
final int ePos = sx.indexOf('E');
final int rPos = sx.indexOf('.');
if (rPos != -1) {
n1In = rPos;
} else if (ePos != -1) {
n1In = ePos;
} else {
n1In = sx.length();
}
if (rPos != -1) {
if (ePos != -1) {
n2In = ePos - rPos - 1;
} else {
n2In = sx.length() - rPos - 1;
}
} else {
n2In = 0;
}
if (ePos != -1) {
int ie = ePos + 1;
expon = 0;
if (sx.charAt(ie) == '-') {
for (++ie; ie < sx.length(); ie++) {
if (sx.charAt(ie) != '0') {
break;
}
}
if (ie < sx.length()) {
expon = -Integer.parseInt(sx.substring(ie));
}
} else {
if (sx.charAt(ie) == '+') {
++ie;
}
for (; ie < sx.length(); ie++) {
if (sx.charAt(ie) != '0') {
break;
}
}
if (ie < sx.length()) {
expon = Integer.parseInt(sx.substring(ie));
}
}
}
final int p;
if (precisionSet) {
p = precision;
} else {
p = defaultDigits - 1;
}
final char[] ca1 = sx.toCharArray();
final char[] ca2 = new char[n1In + n2In];
final char[] ca3;
final char[] ca4;
final char[] ca5;
for (j = 0; j < n1In; j++) {
ca2[j] = ca1[j];
}
i = j + 1;
for (k = 0; k < n2In; j++, i++, k++) {
ca2[j] = ca1[i];
}
if (n1In + expon <= 0) {
ca3 = new char[-expon + n2In];
for (j = 0, k = 0; k < (-n1In - expon); k++, j++) {
ca3[j] = '0';
}
for (i = 0; i < (n1In + n2In); i++, j++) {
ca3[j] = ca2[i];
}
} else {
ca3 = ca2;
}
boolean carry = false;
if (p < -expon + n2In) {
if (expon < 0) {
i = p;
} else {
i = p + n1In;
}
carry = checkForCarry(ca3, i);
if (carry) {
carry = startSymbolicCarry(ca3, i - 1, 0);
}
}
if (n1In + expon <= 0) {
ca4 = new char[2 + p];
if (!carry) {
ca4[0] = '0';
} else {
ca4[0] = '1';
}
if (alternateForm || !precisionSet || precision != 0) {
ca4[1] = '.';
for (i = 0, j = 2; i < Math.min(p, ca3.length); i++, j++) {
ca4[j] = ca3[i];
}
for (; j < ca4.length; j++) {
ca4[j] = '0';
}
}
} else {
if (!carry) {
if (alternateForm || !precisionSet
|| precision != 0) {
ca4 = new char[n1In + expon + p + 1];
} else {
ca4 = new char[n1In + expon];
}
j = 0;
} else {
if (alternateForm || !precisionSet
|| precision != 0) {
ca4 = new char[n1In + expon + p + 2];
} else {
ca4 = new char[n1In + expon + 1];
}
ca4[0] = '1';
j = 1;
}
for (i = 0; i < Math.min(n1In + expon, ca3.length); i++, j++) {
ca4[j] = ca3[i];
}
for (; i < n1In + expon; i++, j++) {
ca4[j] = '0';
}
if (alternateForm || !precisionSet || precision != 0) {
ca4[j] = '.';
j++;
for (k = 0; i < ca3.length && k < p; i++, j++, k++) {
ca4[j] = ca3[i];
}
for (; j < ca4.length; j++) {
ca4[j] = '0';
}
}
}
int nZeros = 0;
if (!leftJustify && leadingZeros) {
int xThousands = 0;
if (thousands) {
int xlead = 0;
if (ca4[0] == '+' || ca4[0] == '-' || ca4[0] == ' ') {
xlead = 1;
}
int xdp = xlead;
for (; xdp < ca4.length; xdp++) {
if (ca4[xdp] == '.') {
break;
}
}
xThousands = (xdp - xlead) / 3;
}
if (fieldWidthSet) {
nZeros = fieldWidth - ca4.length;
}
if ((!minusSign && (leadingSign || leadingSpace)) || minusSign) {
nZeros--;
}
nZeros -= xThousands;
if (nZeros < 0) {
nZeros = 0;
}
}
j = 0;
if ((!minusSign && (leadingSign || leadingSpace)) || minusSign) {
ca5 = new char[ca4.length + nZeros + 1];
j++;
} else {
ca5 = new char[ca4.length + nZeros];
}
if (!minusSign) {
if (leadingSign) {
ca5[0] = '+';
}
if (leadingSpace) {
ca5[0] = ' ';
}
} else {
ca5[0] = '-';
}
for (i = 0; i < nZeros; i++, j++) {
ca5[j] = '0';
}
for (i = 0; i < ca4.length; i++, j++) {
ca5[j] = ca4[i];
}
int lead = 0;
if (ca5[0] == '+' || ca5[0] == '-' || ca5[0] == ' ') {
lead = 1;
}
int dp = lead;
for (; dp < ca5.length; dp++) {
if (ca5[dp] == '.') {
break;
}
}
final int nThousands = (dp - lead) / 3;
// Localize the decimal point.
if (dp < ca5.length) {
ca5[dp] = dfs.getDecimalSeparator();
}
char[] ca6 = ca5;
if (thousands && nThousands > 0) {
ca6 = new char[ca5.length + nThousands + lead];
ca6[0] = ca5[0];
for (i = lead, k = lead; i < dp; i++) {
if (i > 0 && (dp - i) % 3 == 0) {
// ca6[k]=',';
ca6[k] = dfs.getGroupingSeparator();
ca6[k + 1] = ca5[i];
k += 2;
} else {
ca6[k] = ca5[i];
k++;
}
}
for (; i < ca5.length; i++, k++) {
ca6[k] = ca5[i];
}
}
return ca6;
}
/**
* An intermediate routine on the way to creating
* an f format String. The method decides whether
* the input double value is an infinity,
* not-a-number, or a finite double and formats
* each type of input appropriately.
*
* @param x the double value to be formatted.
* @return the converted double value.
*/
private String fFormatString(final double x) {
//boolean noDigits=false;
final char[] ca6;
final char[] ca7;
if (Double.isInfinite(x)) {
if (x == Double.POSITIVE_INFINITY) {
if (leadingSign) {
ca6 = "+Inf".toCharArray();
} else if (leadingSpace) {
ca6 = " Inf".toCharArray();
} else {
ca6 = "Inf".toCharArray();
}
} else {
ca6 = "-Inf".toCharArray();
}
//noDigits = true;
} else if (Double.isNaN(x)) {
if (leadingSign) {
ca6 = "+NaN".toCharArray();
} else if (leadingSpace) {
ca6 = " NaN".toCharArray();
} else {
ca6 = "NaN".toCharArray();
}
//noDigits = true;
} else {
ca6 = fFormatDigits(x);
}
ca7 = applyFloatPadding(ca6, false);
return new String(ca7);
}
/**
* For e format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both a
* '+' and a ' ' are specified, the blank flag is
* ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear after the radix character.
* Padding is with trailing 0s.
*
* The behavior is like printf. One (hopefully the
* only) exception is that the minimum number of
* exponent digits is 3 instead of 2 for e and E
* formats when the optional L is used before the
* e, E, g, or G conversion character. The optional
* L does not imply conversion to a long long
* double.
*/
@SuppressWarnings("OverlyLongMethod")
private char[] eFormatDigits(final double x, final char eChar) {
char[] ca1;
char[] ca2;
final char[] ca3;
// int defaultDigits=6;
String sx; //sxOut;
int i;
int j;
int k;
final int p;
// int n1In,n2In;
int expon = 0;
int ePos;
final int rPos;
final int eSize;
boolean minusSign = false;
if (x > 0.0) {
sx = Double.toString(x);
} else if (x < 0.0) {
sx = Double.toString(-x);
minusSign = true;
} else {
sx = Double.toString(x);
if (sx.charAt(0) == '-') {
minusSign = true;
sx = sx.substring(1);
}
}
ePos = sx.indexOf('E');
if (ePos == -1) {
ePos = sx.indexOf('e');
}
rPos = sx.indexOf('.');
// if (rPos!=-1)
// n1In=rPos;
// else if (ePos!=-1)
// n1In=ePos;
// else
// n1In=sx.length();
// if (rPos!=-1) {
// if (ePos!=-1)
// n2In = ePos-rPos-1;
// else
// n2In = sx.length()-rPos-1;
// }
// else
// n2In = 0;
if (ePos != -1) {
int ie = ePos + 1;
expon = 0;
if (sx.charAt(ie) == '-') {
for (++ie; ie < sx.length(); ie++) {
if (sx.charAt(ie) != '0') {
break;
}
}
if (ie < sx.length()) {
expon = -Integer.parseInt(sx.substring(ie));
}
} else {
if (sx.charAt(ie) == '+') {
++ie;
}
for (; ie < sx.length(); ie++) {
if (sx.charAt(ie) != '0') {
break;
}
}
if (ie < sx.length()) {
expon = Integer.parseInt(sx.substring(ie));
}
}
}
if (rPos != -1) {
expon += rPos - 1;
}
if (precisionSet) {
p = precision;
} else {
p = defaultDigits - 1;
}
if (rPos != -1 && ePos != -1) {
ca1 = (sx.substring(0, rPos) +
sx.substring(rPos + 1, ePos)).toCharArray();
} else if (rPos != -1) {
ca1 = (sx.substring(0, rPos) +
sx.substring(rPos + 1)).toCharArray();
} else if (ePos != -1) {
ca1 = sx.substring(0, ePos).toCharArray();
} else {
ca1 = sx.toCharArray();
}
boolean carry;
int i0;
if (ca1[0] != '0') {
i0 = 0;
} else {
for (i0 = 0; i0 < ca1.length; i0++) {
if (ca1[i0] != '0') {
break;
}
}
}
if (i0 + p < ca1.length - 1) {
carry = checkForCarry(ca1, i0 + p + 1);
if (carry) {
carry = startSymbolicCarry(ca1, i0 + p, i0);
}
if (carry) {
ca2 = new char[i0 + p + 1];
ca2[i0] = '1';
for (j = 0; j < i0; j++) {
ca2[j] = '0';
}
for (i = i0, j = i0 + 1; j < p + 1; i++, j++) {
ca2[j] = ca1[i];
}
expon++;
ca1 = ca2;
}
}
if (Math.abs(expon) < 100 && !optionalL) {
eSize = 4;
} else {
eSize = 5;
}
if (alternateForm || !precisionSet || precision != 0) {
ca2 = new char[2 + p + eSize];
} else {
ca2 = new char[1 + eSize];
}
if (ca1[0] != '0') {
ca2[0] = ca1[0];
j = 1;
} else {
for (j = 1; j < (ePos == -1 ? ca1.length : ePos); j++) {
if (ca1[j] != '0') {
break;
}
}
if ((ePos != -1 && j < ePos) ||
(ePos == -1 && j < ca1.length)) {
ca2[0] = ca1[j];
expon -= j;
j++;
} else {
ca2[0] = '0';
j = 2;
}
}
if (alternateForm || !precisionSet || precision != 0) {
ca2[1] = '.';
i = 2;
} else {
i = 1;
}
for (k = 0; k < p && j < ca1.length; j++, i++, k++) {
ca2[i] = ca1[j];
}
for (; i < ca2.length - eSize; i++) {
ca2[i] = '0';
}
ca2[i++] = eChar;
if (expon < 0) {
ca2[i++] = '-';
} else {
ca2[i++] = '+';
}
expon = Math.abs(expon);
if (expon >= 100) {
switch (expon / 100) {
case 1:
ca2[i] = '1';
break;
case 2:
ca2[i] = '2';
break;
case 3:
ca2[i] = '3';
break;
case 4:
ca2[i] = '4';
break;
case 5:
ca2[i] = '5';
break;
case 6:
ca2[i] = '6';
break;
case 7:
ca2[i] = '7';
break;
case 8:
ca2[i] = '8';
break;
case 9:
ca2[i] = '9';
break;
}
i++;
}
switch ((expon % 100) / 10) {
case 0:
ca2[i] = '0';
break;
case 1:
ca2[i] = '1';
break;
case 2:
ca2[i] = '2';
break;
case 3:
ca2[i] = '3';
break;
case 4:
ca2[i] = '4';
break;
case 5:
ca2[i] = '5';
break;
case 6:
ca2[i] = '6';
break;
case 7:
ca2[i] = '7';
break;
case 8:
ca2[i] = '8';
break;
case 9:
ca2[i] = '9';
break;
}
i++;
switch (expon % 10) {
case 0:
ca2[i] = '0';
break;
case 1:
ca2[i] = '1';
break;
case 2:
ca2[i] = '2';
break;
case 3:
ca2[i] = '3';
break;
case 4:
ca2[i] = '4';
break;
case 5:
ca2[i] = '5';
break;
case 6:
ca2[i] = '6';
break;
case 7:
ca2[i] = '7';
break;
case 8:
ca2[i] = '8';
break;
case 9:
ca2[i] = '9';
break;
}
int nZeros = 0;
if (!leftJustify && leadingZeros) {
int xThousands = 0;
if (thousands) {
int xlead = 0;
if (ca2[0] == '+' || ca2[0] == '-' || ca2[0] == ' ') {
xlead = 1;
}
int xdp = xlead;
for (; xdp < ca2.length; xdp++) {
if (ca2[xdp] == '.') {
break;
}
}
xThousands = (xdp - xlead) / 3;
}
if (fieldWidthSet) {
nZeros = fieldWidth - ca2.length;
}
if ((!minusSign && (leadingSign || leadingSpace)) || minusSign) {
nZeros--;
}
nZeros -= xThousands;
if (nZeros < 0) {
nZeros = 0;
}
}
j = 0;
if ((!minusSign && (leadingSign || leadingSpace)) || minusSign) {
ca3 = new char[ca2.length + nZeros + 1];
j++;
} else {
ca3 = new char[ca2.length + nZeros];
}
if (!minusSign) {
if (leadingSign) {
ca3[0] = '+';
}
if (leadingSpace) {
ca3[0] = ' ';
}
} else {
ca3[0] = '-';
}
for (k = 0; k < nZeros; j++, k++) {
ca3[j] = '0';
}
for (i = 0; i < ca2.length && j < ca3.length; i++, j++) {
ca3[j] = ca2[i];
}
int lead = 0;
if (ca3[0] == '+' || ca3[0] == '-' || ca3[0] == ' ') {
lead = 1;
}
int dp = lead;
for (; dp < ca3.length; dp++) {
if (ca3[dp] == '.') {
break;
}
}
final int nThousands = dp / 3;
// Localize the decimal point.
if (dp < ca3.length) {
ca3[dp] = dfs.getDecimalSeparator();
}
char[] ca4 = ca3;
if (thousands && nThousands > 0) {
ca4 = new char[ca3.length + nThousands + lead];
ca4[0] = ca3[0];
for (i = lead, k = lead; i < dp; i++) {
if (i > 0 && (dp - i) % 3 == 0) {
// ca4[k]=',';
ca4[k] = dfs.getGroupingSeparator();
ca4[k + 1] = ca3[i];
k += 2;
} else {
ca4[k] = ca3[i];
k++;
}
}
for (; i < ca3.length; i++, k++) {
ca4[k] = ca3[i];
}
}
return ca4;
}
/**
* Check to see if the digits that are going to
* be truncated because of the precision should
* force a round in the preceding digits.
*
* @param ca1 the array of digits
* @param icarry the index of the first digit that
* is to be truncated from the print
* @return true
if the truncation forces
* a round that will change the print
*/
private boolean checkForCarry(final char[] ca1, final int icarry) {
boolean carry = false;
if (icarry < ca1.length) {
if (ca1[icarry] == '6' || ca1[icarry] == '7'
|| ca1[icarry] == '8' || ca1[icarry] == '9') {
carry = true;
} else if (ca1[icarry] == '5') {
int ii = icarry + 1;
for (; ii < ca1.length; ii++) {
if (ca1[ii] != '0') {
break;
}
}
carry = ii < ca1.length;
if (!carry && icarry > 0) {
carry = (ca1[icarry - 1] == '1' || ca1[icarry - 1] == '3'
|| ca1[icarry - 1] == '5' || ca1[icarry - 1] == '7'
|| ca1[icarry - 1] == '9');
}
}
}
return carry;
}
/**
* Start the symbolic carry process. The process
* is not quite finished because the symbolic
* carry may change the length of the string and
* change the exponent (in e format).
*
* @param cLast index of the last digit changed
* by the round
* @param cFirst index of the first digit allowed
* to be changed by this phase of the round
* @return true
if the carry forces
* a round that will change the print still
* more
*/
private boolean startSymbolicCarry(
final char[] ca, final int cLast, final int cFirst) {
boolean carry = true;
for (int i = cLast; carry && i >= cFirst; i--) {
carry = false;
switch (ca[i]) {
case '0':
ca[i] = '1';
break;
case '1':
ca[i] = '2';
break;
case '2':
ca[i] = '3';
break;
case '3':
ca[i] = '4';
break;
case '4':
ca[i] = '5';
break;
case '5':
ca[i] = '6';
break;
case '6':
ca[i] = '7';
break;
case '7':
ca[i] = '8';
break;
case '8':
ca[i] = '9';
break;
case '9':
ca[i] = '0';
carry = true;
break;
}
}
return carry;
}
/**
* An intermediate routine on the way to creating
* an e format String. The method decides whether
* the input double value is an infinity,
* not-a-number, or a finite double and formats
* each type of input appropriately.
*
* @param x the double value to be formatted.
* @param eChar an 'e' or 'E' to use in the
* converted double value.
* @return the converted double value.
*/
private String eFormatString(final double x, final char eChar) {
//boolean noDigits=false;
final char[] ca4;
final char[] ca5;
if (Double.isInfinite(x)) {
if (x == Double.POSITIVE_INFINITY) {
if (leadingSign) {
ca4 = "+Inf".toCharArray();
} else if (leadingSpace) {
ca4 = " Inf".toCharArray();
} else {
ca4 = "Inf".toCharArray();
}
} else {
ca4 = "-Inf".toCharArray();
}
//noDigits = true;
} else if (Double.isNaN(x)) {
if (leadingSign) {
ca4 = "+NaN".toCharArray();
} else if (leadingSpace) {
ca4 = " NaN".toCharArray();
} else {
ca4 = "NaN".toCharArray();
}
//noDigits = true;
} else {
ca4 = eFormatDigits(x, eChar);
}
ca5 = applyFloatPadding(ca4, false);
return new String(ca5);
}
/**
* Apply zero or blank, left or right padding.
*
* @param ca4 array of characters before padding is
* finished
* @param noDigits NaN or signed Inf
* @return a padded array of characters
*/
private char[] applyFloatPadding(
final char[] ca4, final boolean noDigits) {
char[] ca5 = ca4;
if (fieldWidthSet) {
int i;
int j;
final int nBlanks;
if (leftJustify) {
nBlanks = fieldWidth - ca4.length;
if (nBlanks > 0) {
ca5 = new char[ca4.length + nBlanks];
for (i = 0; i < ca4.length; i++) {
ca5[i] = ca4[i];
}
for (j = 0; j < nBlanks; j++, i++) {
ca5[i] = ' ';
}
}
} else if (!leadingZeros || noDigits) {
nBlanks = fieldWidth - ca4.length;
if (nBlanks > 0) {
ca5 = new char[ca4.length + nBlanks];
for (i = 0; i < nBlanks; i++) {
ca5[i] = ' ';
}
for (j = 0; j < ca4.length; i++, j++) {
ca5[i] = ca4[j];
}
}
} else if (leadingZeros) {
nBlanks = fieldWidth - ca4.length;
if (nBlanks > 0) {
ca5 = new char[ca4.length + nBlanks];
i = 0;
j = 0;
if (ca4[0] == '-') {
ca5[0] = '-';
i++;
j++;
}
for (int k = 0; k < nBlanks; i++, k++) {
ca5[i] = '0';
}
for (; j < ca4.length; i++, j++) {
ca5[i] = ca4[j];
}
}
}
}
return ca5;
}
/**
* Format method for the f conversion character.
*
* @param x the double to format.
* @return the formatted String.
*/
private String printFFormat(final double x) {
return fFormatString(x);
}
/**
* Format method for the e or E conversion
* character.
*
* @param x the double to format.
* @return the formatted String.
*/
private String printEFormat(final double x) {
if (conversionCharacter == 'e') {
return eFormatString(x, 'e');
} else {
return eFormatString(x, 'E');
}
}
/**
* Format method for the g conversion character.
*
* For g format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both a
* '+' and a ' ' are specified, the blank flag is
* ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear after the radix character.
* Padding is with trailing 0s.
*
* @param x the double to format.
* @return the formatted String.
*/
private String printGFormat(final double x) {
final String sx;
final String sy;
final String sz;
StringBuffer ret;
final int savePrecision = precision;
int i;
final char[] ca4;
final char[] ca5;
//boolean noDigits=false;
if (Double.isInfinite(x)) {
if (x == Double.POSITIVE_INFINITY) {
if (leadingSign) {
ca4 = "+Inf".toCharArray();
} else if (leadingSpace) {
ca4 = " Inf".toCharArray();
} else {
ca4 = "Inf".toCharArray();
}
} else {
ca4 = "-Inf".toCharArray();
}
// noDigits = true;
} else if (Double.isNaN(x)) {
if (leadingSign) {
ca4 = "+NaN".toCharArray();
} else if (leadingSpace) {
ca4 = " NaN".toCharArray();
} else {
ca4 = "NaN".toCharArray();
}
//noDigits = true;
} else {
if (!precisionSet) {
precision = defaultDigits;
}
if (precision == 0) {
precision = 1;
}
final int ePos;
if (conversionCharacter == 'g') {
sx = eFormatString(x, 'e').trim();
ePos = sx.indexOf('e');
} else {
sx = eFormatString(x, 'E').trim();
ePos = sx.indexOf('E');
}
i = ePos + 1;
int expon = 0;
if (sx.charAt(i) == '-') {
for (++i; i < sx.length(); i++) {
if (sx.charAt(i) != '0') {
break;
}
}
if (i < sx.length()) {
expon = -Integer.parseInt(sx.substring(i));
}
} else {
if (sx.charAt(i) == '+') {
++i;
}
for (; i < sx.length(); i++) {
if (sx.charAt(i) != '0') {
break;
}
}
if (i < sx.length()) {
expon = Integer.parseInt(sx.substring(i));
}
}
// Trim trailing zeros.
// If the radix character is not followed by
// a digit, trim it, too.
if (!alternateForm) {
if (expon >= -4 && expon < precision) {
sy = fFormatString(x).trim();
} else {
sy = sx.substring(0, ePos);
}
i = sy.length() - 1;
for (; i >= 0; i--) {
if (sy.charAt(i) != '0') {
break;
}
}
if (i >= 0 && sy.charAt(i) == '.') {
i--;
}
if (i == -1) {
sz = "0";
} else if (!Character.isDigit(sy.charAt(i))) {
sz = sy.substring(0, i + 1) + '0';
} else {
sz = sy.substring(0, i + 1);
}
if (expon >= -4 && expon < precision) {
ret = new StringBuffer(sz);
} else {
ret = new StringBuffer(sz);
ret.append(sx.substring(ePos));
}
} else {
if (expon >= -4 && expon < precision) {
ret = new StringBuffer(fFormatString(x).trim());
} else {
ret = new StringBuffer(sx);
}
}
// leading space was trimmed off during
// construction
if (leadingSpace) {
if (x >= 0) {
ret.append(' ').append(ret);
}
}
ca4 = ret.toString().toCharArray();
}
// Pad with blanks or zeros.
ca5 = applyFloatPadding(ca4, false);
precision = savePrecision;
return new String(ca5);
}
/**
* Format method for the d conversion specifer and
* short argument.
*
* For d format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. A '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both a
* '+' and a ' ' are specified, the blank flag is
* ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the short to format.
* @return the formatted String.
*/
private String printDFormat(final short x) {
return printDFormat(Short.toString(x));
}
/**
* Format method for the d conversion character and
* long argument.
*
* For d format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. A '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both a
* '+' and a ' ' are specified, the blank flag is
* ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the long to format.
* @return the formatted String.
*/
private String printDFormat(final long x) {
return printDFormat(Long.toString(x));
}
/**
* Format method for the d conversion character and
* int argument.
*
* For d format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. A '+' character means that the conversion
* will always begin with a sign (+ or -). The
* blank flag character means that a non-negative
* input will be preceded with a blank. If both a
* '+' and a ' ' are specified, the blank flag is
* ignored. The '0' flag character implies that
* padding to the field width will be done with
* zeros instead of blanks.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the int to format.
* @return the formatted String.
*/
private String printDFormat(final int x) {
return printDFormat(Integer.toString(x));
}
/**
* Utility method for formatting using the d
* conversion character.
*
* @param sx the String to format, the result of
* converting a short, int, or long to a
* String.
* @return the formatted String.
*/
private String printDFormat(String sx) {
int nLeadingZeros = 0;
int nBlanks = 0, n = 0;
int i = 0;
final int jFirst;
final boolean neg = sx.charAt(0) == '-';
if (sx.equals("0") && precisionSet && precision == 0) {
sx = "";
}
if (!neg) {
if (precisionSet && sx.length() < precision) {
nLeadingZeros = precision - sx.length();
}
} else {
if (precisionSet && (sx.length() - 1) < precision) {
nLeadingZeros = precision - sx.length() + 1;
}
}
if (nLeadingZeros < 0) {
nLeadingZeros = 0;
}
if (fieldWidthSet) {
nBlanks = fieldWidth - nLeadingZeros - sx.length();
if (!neg && (leadingSign || leadingSpace)) {
nBlanks--;
}
}
if (nBlanks < 0) {
nBlanks = 0;
}
if (leadingSign) {
n++;
} else if (leadingSpace) {
n++;
}
n += nBlanks;
n += nLeadingZeros;
n += sx.length();
final char[] ca = new char[n];
if (leftJustify) {
if (neg) {
ca[i++] = '-';
} else if (leadingSign) {
ca[i++] = '+';
} else if (leadingSpace) {
ca[i++] = ' ';
}
final char[] csx = sx.toCharArray();
jFirst = neg ? 1 : 0;
for (int j = 0; j < nLeadingZeros; i++, j++) {
ca[i] = '0';
}
for (int j = jFirst; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
for (int j = 0; j < nBlanks; i++, j++) {
ca[i] = ' ';
}
} else {
if (!leadingZeros) {
for (i = 0; i < nBlanks; i++) {
ca[i] = ' ';
}
if (neg) {
ca[i++] = '-';
} else if (leadingSign) {
ca[i++] = '+';
} else if (leadingSpace) {
ca[i++] = ' ';
}
} else {
if (neg) {
ca[i++] = '-';
} else if (leadingSign) {
ca[i++] = '+';
} else if (leadingSpace) {
ca[i++] = ' ';
}
for (int j = 0; j < nBlanks; j++, i++) {
ca[i] = '0';
}
}
for (int j = 0; j < nLeadingZeros; j++, i++) {
ca[i] = '0';
}
final char[] csx = sx.toCharArray();
jFirst = neg ? 1 : 0;
for (int j = jFirst; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
}
return new String(ca);
}
/**
* Format method for the x conversion character and
* short argument.
*
* For x format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means to lead with
* '0x'.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the short to format.
* @return the formatted String.
*/
private String printXFormat(final short x) {
String sx = null;
if (x == Short.MIN_VALUE) {
sx = "8000";
} else if (x < 0) {
String t;
if (x == Short.MIN_VALUE) {
t = "0";
} else {
t = Integer.toString(
(~(-x - 1)) ^ Short.MIN_VALUE, 16);
if (t.charAt(0) == 'F' || t.charAt(0) == 'f') {
t = t.substring(16, 32);
}
}
switch (t.length()) {
case 1:
sx = "800" + t;
break;
case 2:
sx = "80" + t;
break;
case 3:
sx = '8' + t;
break;
case 4:
switch (t.charAt(0)) {
case '1':
sx = '9' + t.substring(1, 4);
break;
case '2':
sx = 'a' + t.substring(1, 4);
break;
case '3':
sx = 'b' + t.substring(1, 4);
break;
case '4':
sx = 'c' + t.substring(1, 4);
break;
case '5':
sx = 'd' + t.substring(1, 4);
break;
case '6':
sx = 'e' + t.substring(1, 4);
break;
case '7':
sx = 'f' + t.substring(1, 4);
break;
}
break;
}
} else {
sx = Integer.toString(x, 16);
}
return printXFormat(sx);
}
/**
* Format method for the x conversion character and
* long argument.
*
* For x format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means to lead with
* '0x'.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the long to format.
* @return the formatted String.
*/
private String printXFormat(final long x) {
String sx = null;
if (x == Long.MIN_VALUE) {
sx = "8000000000000000";
} else if (x < 0) {
final String t = Long.toString(
(~(-x - 1)) ^ Long.MIN_VALUE, 16);
switch (t.length()) {
case 1:
sx = "800000000000000" + t;
break;
case 2:
sx = "80000000000000" + t;
break;
case 3:
sx = "8000000000000" + t;
break;
case 4:
sx = "800000000000" + t;
break;
case 5:
sx = "80000000000" + t;
break;
case 6:
sx = "8000000000" + t;
break;
case 7:
sx = "800000000" + t;
break;
case 8:
sx = "80000000" + t;
break;
case 9:
sx = "8000000" + t;
break;
case 10:
sx = "800000" + t;
break;
case 11:
sx = "80000" + t;
break;
case 12:
sx = "8000" + t;
break;
case 13:
sx = "800" + t;
break;
case 14:
sx = "80" + t;
break;
case 15:
sx = '8' + t;
break;
case 16:
switch (t.charAt(0)) {
case '1':
sx = '9' + t.substring(1, 16);
break;
case '2':
sx = 'a' + t.substring(1, 16);
break;
case '3':
sx = 'b' + t.substring(1, 16);
break;
case '4':
sx = 'c' + t.substring(1, 16);
break;
case '5':
sx = 'd' + t.substring(1, 16);
break;
case '6':
sx = 'e' + t.substring(1, 16);
break;
case '7':
sx = 'f' + t.substring(1, 16);
break;
}
break;
}
} else {
sx = Long.toString(x, 16);
}
return printXFormat(sx);
}
/**
* Format method for the x conversion character and
* int argument.
*
* For x format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means to lead with
* '0x'.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the int to format.
* @return the formatted String.
*/
private String printXFormat(final int x) {
String sx = null;
if (x == Integer.MIN_VALUE) {
sx = "80000000";
} else if (x < 0) {
final String t = Integer.toString(
(~(-x - 1)) ^ Integer.MIN_VALUE, 16);
switch (t.length()) {
case 1:
sx = "8000000" + t;
break;
case 2:
sx = "800000" + t;
break;
case 3:
sx = "80000" + t;
break;
case 4:
sx = "8000" + t;
break;
case 5:
sx = "800" + t;
break;
case 6:
sx = "80" + t;
break;
case 7:
sx = '8' + t;
break;
case 8:
switch (t.charAt(0)) {
case '1':
sx = '9' + t.substring(1, 8);
break;
case '2':
sx = 'a' + t.substring(1, 8);
break;
case '3':
sx = 'b' + t.substring(1, 8);
break;
case '4':
sx = 'c' + t.substring(1, 8);
break;
case '5':
sx = 'd' + t.substring(1, 8);
break;
case '6':
sx = 'e' + t.substring(1, 8);
break;
case '7':
sx = 'f' + t.substring(1, 8);
break;
}
break;
}
} else {
sx = Integer.toString(x, 16);
}
return printXFormat(sx);
}
/**
* Utility method for formatting using the x
* conversion character.
*
* @param sx the String to format, the result of
* converting a short, int, or long to a
* String.
* @return the formatted String.
*/
private String printXFormat(String sx) {
int nLeadingZeros = 0;
int nBlanks = 0;
if (sx.equals("0") && precisionSet && precision == 0) {
sx = "";
}
if (precisionSet) {
nLeadingZeros = precision - sx.length();
}
if (nLeadingZeros < 0) {
nLeadingZeros = 0;
}
if (fieldWidthSet) {
nBlanks = fieldWidth - nLeadingZeros - sx.length();
if (alternateForm) {
nBlanks -= 2;
}
}
if (nBlanks < 0) {
nBlanks = 0;
}
int n = 0;
if (alternateForm) {
n += 2;
}
n += nLeadingZeros;
n += sx.length();
n += nBlanks;
final char[] ca = new char[n];
int i = 0;
if (leftJustify) {
if (alternateForm) {
ca[i++] = '0';
ca[i++] = 'x';
}
for (int j = 0; j < nLeadingZeros; j++, i++) {
ca[i] = '0';
}
final char[] csx = sx.toCharArray();
for (int j = 0; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
for (int j = 0; j < nBlanks; j++, i++) {
ca[i] = ' ';
}
} else {
if (!leadingZeros) {
for (int j = 0; j < nBlanks; j++, i++) {
ca[i] = ' ';
}
}
if (alternateForm) {
ca[i++] = '0';
ca[i++] = 'x';
}
if (leadingZeros) {
for (int j = 0; j < nBlanks; j++, i++) {
ca[i] = '0';
}
}
for (int j = 0; j < nLeadingZeros; j++, i++) {
ca[i] = '0';
}
final char[] csx = sx.toCharArray();
for (int j = 0; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
}
String caReturn = new String(ca);
if (conversionCharacter == 'X') {
caReturn = caReturn.toUpperCase();
}
return caReturn;
}
/**
* Format method for the o conversion character and
* short argument.
*
* For o format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means that the
* output begins with a leading 0 and the precision
* is increased by 1.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the short to format.
* @return the formatted String.
*/
private String printOFormat(final short x) {
String sx = null;
if (x == Short.MIN_VALUE) {
sx = "100000";
} else if (x < 0) {
final String t = Integer.toString(
(~(-x - 1)) ^ Short.MIN_VALUE, 8);
switch (t.length()) {
case 1:
sx = "10000" + t;
break;
case 2:
sx = "1000" + t;
break;
case 3:
sx = "100" + t;
break;
case 4:
sx = "10" + t;
break;
case 5:
sx = '1' + t;
break;
}
} else {
sx = Integer.toString(x, 8);
}
return printOFormat(sx);
}
/**
* Format method for the o conversion character and
* long argument.
*
* For o format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means that the
* output begins with a leading 0 and the precision
* is increased by 1.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the long to format.
* @return the formatted String.
*/
private String printOFormat(final long x) {
String sx = null;
if (x == Long.MIN_VALUE) {
sx = "1000000000000000000000";
} else if (x < 0) {
final String t = Long.toString(
(~(-x - 1)) ^ Long.MIN_VALUE, 8);
switch (t.length()) {
case 1:
sx = "100000000000000000000" + t;
break;
case 2:
sx = "10000000000000000000" + t;
break;
case 3:
sx = "1000000000000000000" + t;
break;
case 4:
sx = "100000000000000000" + t;
break;
case 5:
sx = "10000000000000000" + t;
break;
case 6:
sx = "1000000000000000" + t;
break;
case 7:
sx = "100000000000000" + t;
break;
case 8:
sx = "10000000000000" + t;
break;
case 9:
sx = "1000000000000" + t;
break;
case 10:
sx = "100000000000" + t;
break;
case 11:
sx = "10000000000" + t;
break;
case 12:
sx = "1000000000" + t;
break;
case 13:
sx = "100000000" + t;
break;
case 14:
sx = "10000000" + t;
break;
case 15:
sx = "1000000" + t;
break;
case 16:
sx = "100000" + t;
break;
case 17:
sx = "10000" + t;
break;
case 18:
sx = "1000" + t;
break;
case 19:
sx = "100" + t;
break;
case 20:
sx = "10" + t;
break;
case 21:
sx = '1' + t;
break;
}
} else {
sx = Long.toString(x, 8);
}
return printOFormat(sx);
}
/**
* Format method for the o conversion character and
* int argument.
*
* For o format, the flag character '-', means that
* the output should be left justified within the
* field. The default is to pad with blanks on the
* left. The '#' flag character means that the
* output begins with a leading 0 and the precision
* is increased by 1.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is to
* add no padding. Padding is with blanks by
* default.
*
* The precision, if set, is the minimum number of
* digits to appear. Padding is with leading 0s.
*
* @param x the int to format.
* @return the formatted String.
*/
private String printOFormat(final int x) {
String sx = null;
if (x == Integer.MIN_VALUE) {
sx = "20000000000";
} else if (x < 0) {
final String t = Integer.toString(
(~(-x - 1)) ^ Integer.MIN_VALUE, 8);
switch (t.length()) {
case 1:
sx = "2000000000" + t;
break;
case 2:
sx = "200000000" + t;
break;
case 3:
sx = "20000000" + t;
break;
case 4:
sx = "2000000" + t;
break;
case 5:
sx = "200000" + t;
break;
case 6:
sx = "20000" + t;
break;
case 7:
sx = "2000" + t;
break;
case 8:
sx = "200" + t;
break;
case 9:
sx = "20" + t;
break;
case 10:
sx = '2' + t;
break;
case 11:
sx = '3' + t.substring(1);
break;
}
} else {
sx = Integer.toString(x, 8);
}
return printOFormat(sx);
}
/**
* Utility method for formatting using the o
* conversion character.
*
* @param sx the String to format, the result of
* converting a short, int, or long to a
* String.
* @return the formatted String.
*/
private String printOFormat(String sx) {
int nLeadingZeros = 0;
int nBlanks = 0;
if (sx.equals("0") && precisionSet && precision == 0) {
sx = "";
}
if (precisionSet) {
nLeadingZeros = precision - sx.length();
}
if (alternateForm) {
nLeadingZeros++;
}
if (nLeadingZeros < 0) {
nLeadingZeros = 0;
}
if (fieldWidthSet) {
nBlanks = fieldWidth - nLeadingZeros - sx.length();
}
if (nBlanks < 0) {
nBlanks = 0;
}
final int n = nLeadingZeros + sx.length() + nBlanks;
final char[] ca = new char[n];
int i;
if (leftJustify) {
for (i = 0; i < nLeadingZeros; i++) {
ca[i] = '0';
}
final char[] csx = sx.toCharArray();
for (int j = 0; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
for (int j = 0; j < nBlanks; j++, i++) {
ca[i] = ' ';
}
} else {
if (leadingZeros) {
for (i = 0; i < nBlanks; i++) {
ca[i] = '0';
}
} else {
for (i = 0; i < nBlanks; i++) {
ca[i] = ' ';
}
}
for (int j = 0; j < nLeadingZeros; j++, i++) {
ca[i] = '0';
}
final char[] csx = sx.toCharArray();
for (int j = 0; j < csx.length; j++, i++) {
ca[i] = csx[j];
}
}
return new String(ca);
}
/**
* Format method for the c conversion character and
* char argument.
*
* The only flag character that affects c format is
* the '-', meaning that the output should be left
* justified within the field. The default is to
* pad with blanks on the left.
*
* The field width is treated as the minimum number
* of characters to be printed. Padding is with
* blanks by default. The default width is 1.
*
* The precision, if set, is ignored.
*
* @param x the char to format.
* @return the formatted String.
*/
private String printCFormat(final char x) {
final int nPrint = 1;
int width = fieldWidth;
if (!fieldWidthSet) {
width = nPrint;
}
final char[] ca = new char[width];
int i;
if (leftJustify) {
ca[0] = x;
for (i = 1; i <= width - nPrint; i++) {
ca[i] = ' ';
}
} else {
for (i = 0; i < width - nPrint; i++) {
ca[i] = ' ';
}
ca[i] = x;
}
return new String(ca);
}
/**
* Format method for the s conversion character and
* String argument.
*
* The only flag character that affects s format is
* the '-', meaning that the output should be left
* justified within the field. The default is to
* pad with blanks on the left.
*
* The field width is treated as the minimum number
* of characters to be printed. The default is the
* smaller of the number of characters in the the
* input and the precision. Padding is with blanks
* by default.
*
* The precision, if set, specifies the maximum
* number of characters to be printed from the
* string. A null digit string is treated
* as a 0. The default is not to set a maximum
* number of characters to be printed.
*
* @param x the String to format.
* @return the formatted String.
*/
private String printSFormat(final String x) {
int nPrint = x.length();
int width = fieldWidth;
if (precisionSet && nPrint > precision) {
nPrint = precision;
}
if (!fieldWidthSet) {
width = nPrint;
}
int n = 0;
if (width > nPrint) {
n += width - nPrint;
}
if (nPrint >= x.length()) {
n += x.length();
} else {
n += nPrint;
}
final char[] ca = new char[n];
int i;
if (leftJustify) {
if (nPrint >= x.length()) {
final char[] csx = x.toCharArray();
for (i = 0; i < x.length(); i++) {
ca[i] = csx[i];
}
} else {
final char[] csx =
x.substring(0, nPrint).toCharArray();
for (i = 0; i < nPrint; i++) {
ca[i] = csx[i];
}
}
for (int j = 0; j < width - nPrint; j++, i++) {
ca[i] = ' ';
}
} else {
for (i = 0; i < width - nPrint; i++) {
ca[i] = ' ';
}
if (nPrint >= x.length()) {
final char[] csx = x.toCharArray();
for (int j = 0; j < x.length(); i++, j++) {
ca[i] = csx[j];
}
} else {
final char[] csx =
x.substring(0, nPrint).toCharArray();
for (int j = 0; j < nPrint; i++, j++) {
ca[i] = csx[j];
}
}
}
return new String(ca);
}
/**
* Check for a conversion character. If it is
* there, store it.
*
* @return true
if the conversion
* character is there, and
* false
otherwise.
*/
private boolean setConversionCharacter() {
/* idfgGoxXeEcs */
boolean ret = false;
conversionCharacter = '\0';
if (pos < fmt.length()) {
final char c = fmt.charAt(pos);
if (c == 'i' || c == 'd' || c == 'f' || c == 'g' || c == 'G'
|| c == 'o' || c == 'x' || c == 'X' || c == 'e'
|| c == 'E' || c == 'c' || c == 's' || c == '%') {
conversionCharacter = c;
pos++;
ret = true;
}
}
return ret;
}
/**
* Check for an h, l, or L in a format. An L is
* used to control the minimum number of digits
* in an exponent when using floating point
* formats. An l or h is used to control
* conversion of the input to a long or short,
* respectively, before formatting. If any of
* these is present, store them.
*/
private void setOptionalHL() {
optionalh = false;
optionall = false;
optionalL = false;
if (pos < fmt.length()) {
final char c = fmt.charAt(pos);
if (c == 'h') {
optionalh = true;
pos++;
} else if (c == 'l') {
optionall = true;
pos++;
} else if (c == 'L') {
optionalL = true;
pos++;
}
}
}
/**
* Set the precision.
*/
private void setPrecision() {
final int firstPos = pos;
precisionSet = false;
if (pos < fmt.length() && fmt.charAt(pos) == '.') {
pos++;
if ((pos < fmt.length())
&& (fmt.charAt(pos) == '*')) {
pos++;
if (!setPrecisionArgPosition()) {
variablePrecision = true;
precisionSet = true;
}
} else {
while (pos < fmt.length()) {
final char c = fmt.charAt(pos);
if (Character.isDigit(c)) {
pos++;
} else {
break;
}
}
if (pos > firstPos + 1) {
final String sz = fmt.substring(firstPos + 1, pos);
precision = Integer.parseInt(sz);
precisionSet = true;
}
}
}
}
/**
* Set the field width.
*/
private void setFieldWidth() {
final int firstPos = pos;
fieldWidth = 0;
fieldWidthSet = false;
if ((pos < fmt.length())
&& (fmt.charAt(pos) == '*')) {
pos++;
if (!setFieldWidthArgPosition()) {
variableFieldWidth = true;
fieldWidthSet = true;
}
} else {
while (pos < fmt.length()) {
final char c = fmt.charAt(pos);
if (Character.isDigit(c)) {
pos++;
} else {
break;
}
}
if (firstPos < pos && firstPos < fmt.length()) {
final String sz = fmt.substring(firstPos, pos);
fieldWidth = Integer.parseInt(sz);
fieldWidthSet = true;
}
}
}
/**
* Store the digits n
in %n$ forms.
*/
private void setArgPosition() {
int xPos;
for (xPos = pos; xPos < fmt.length(); xPos++) {
if (!Character.isDigit(fmt.charAt(xPos))) {
break;
}
}
if (xPos > pos && xPos < fmt.length()) {
if (fmt.charAt(xPos) == '$') {
positionalSpecification = true;
argumentPosition =
Integer.parseInt(fmt.substring(pos, xPos));
pos = xPos + 1;
}
}
}
/**
* Store the digits n
in *n$ forms.
*/
private boolean setFieldWidthArgPosition() {
boolean ret = false;
int xPos;
for (xPos = pos; xPos < fmt.length(); xPos++) {
if (!Character.isDigit(fmt.charAt(xPos))) {
break;
}
}
if (xPos > pos && xPos < fmt.length()) {
if (fmt.charAt(xPos) == '$') {
positionalFieldWidth = true;
argumentPositionForFieldWidth =
Integer.parseInt(fmt.substring(pos, xPos));
pos = xPos + 1;
ret = true;
}
}
return ret;
}
/**
* Store the digits n
in *n$ forms.
*/
private boolean setPrecisionArgPosition() {
boolean ret = false;
int xPos;
for (xPos = pos; xPos < fmt.length(); xPos++) {
if (!Character.isDigit(fmt.charAt(xPos))) {
break;
}
}
if (xPos > pos && xPos < fmt.length()) {
if (fmt.charAt(xPos) == '$') {
positionalPrecision = true;
argumentPositionForPrecision =
Integer.parseInt(fmt.substring(pos, xPos));
pos = xPos + 1;
ret = true;
}
}
return ret;
}
boolean isPositionalSpecification() {
return positionalSpecification;
}
int getArgumentPosition() {
return argumentPosition;
}
boolean isPositionalFieldWidth() {
return positionalFieldWidth;
}
int getArgumentPositionForFieldWidth() {
return argumentPositionForFieldWidth;
}
boolean isPositionalPrecision() {
return positionalPrecision;
}
int getArgumentPositionForPrecision() {
return argumentPositionForPrecision;
}
/**
* Set flag characters, one of '-+#0 or a space.
*/
private void setFlagCharacters() {
/* '-+ #0 */
thousands = false;
leftJustify = false;
leadingSign = false;
leadingSpace = false;
alternateForm = false;
leadingZeros = false;
OUTER:
for (; pos < fmt.length(); pos++) {
final char c = fmt.charAt(pos);
switch (c) {
case '\'':
thousands = true;
break;
case '-':
leftJustify = true;
leadingZeros = false;
break;
case '+':
leadingSign = true;
leadingSpace = false;
break;
case ' ':
if (!leadingSign) {
leadingSpace = true;
}
break;
case '#':
alternateForm = true;
break;
case '0':
if (!leftJustify) {
leadingZeros = true;
}
break;
default:
break OUTER;
}
}
}
/**
* The integer portion of the result of a decimal
* conversion (i, d, u, f, g, or G) will be
* formatted with thousands' grouping characters.
* For other conversions the flag is ignored.
*/
private boolean thousands;
/**
* The result of the conversion will be
* left-justified within the field.
*/
private boolean leftJustify;
/**
* The result of a signed conversion will always
* begin with a sign (+ or -).
*/
private boolean leadingSign;
/**
* Flag indicating that left padding with spaces is
* specified.
*/
private boolean leadingSpace;
/**
* For an o conversion, increase the precision to
* force the first digit of the result to be a
* zero. For x (or X) conversions, a non-zero
* result will have 0x (or 0X) prepended to it.
* For e, E, f, g, or G conversions, the result
* will always contain a radix character, even if
* no digits follow the point. For g and G
* conversions, trailing zeros will not be removed
* from the result.
*/
private boolean alternateForm;
/**
* Flag indicating that left padding with zeroes is
* specified.
*/
private boolean leadingZeros;
/**
* Flag indicating that the field width is *.
*/
private boolean variableFieldWidth;
/**
* If the converted value has fewer bytes than the
* field width, it will be padded with spaces or
* zeroes.
*/
private int fieldWidth;
/**
* Flag indicating whether or not the field width
* has been set.
*/
private boolean fieldWidthSet;
/**
* The minimum number of digits to appear for the
* d, i, o, u, x, or X conversions. The number of
* digits to appear after the radix character for
* the e, E, and f conversions. The maximum number
* of significant digits for the g and G
* conversions. The maximum number of bytes to be
* printed from a string in s and S conversions.
*/
private int precision;
/**
* Default precision.
*/
private static final int defaultDigits = 6;
/**
* Flag indicating that the precision is *.
*/
private boolean variablePrecision;
/**
* Flag indicating whether or not the precision has
* been set.
*/
private boolean precisionSet;
/*
*/
private boolean positionalSpecification;
private int argumentPosition;
private boolean positionalFieldWidth;
private int argumentPositionForFieldWidth;
private boolean positionalPrecision;
private int argumentPositionForPrecision;
/**
* Flag specifying that a following d, i, o, u, x,
* or X conversion character applies to a type
* short int.
*/
private boolean optionalh;
/**
* Flag specifying that a following d, i, o, u, x,
* or X conversion character applies to a type lont
* int argument.
*/
private boolean optionall;
/**
* Flag specifying that a following e, E, f, g, or
* G conversion character applies to a type double
* argument. This is a noop in Java.
*/
private boolean optionalL;
/**
* Control string type.
*/
private char conversionCharacter;
/**
* Position within the control string. Used by
* the constructor.
*/
private int pos;
/**
* Literal or control format string.
*/
private String fmt;
}
/**
* Vector of control strings and format literals.
*/
private final ArrayList vFmt = new ArrayList();
/**
* Character position. Used by the constructor.
*/
private int cPos;
/**
* Character position. Used by the constructor.
*/
private final DecimalFormatSymbols dfs;
}