com.igormaznitsa.meta.Complexity Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jcp Show documentation
Show all versions of jcp Show documentation
Powerful multi-pass preprocessor to process directives situated in C-styled commentaries
/*
* Copyright 2002-2019 Igor Maznitsa (http://www.igormaznitsa.com)
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.igormaznitsa.meta;
import javax.annotation.Nonnull;
/**
* Complexity constants. List was taken from the wiki page.
*
* @since 1.1.2
*/
public enum Complexity {
/**
* Constant value. Example: Determining if an integer (represented in binary) is even or odd.
*
* O(1)
*
* @since 1.1.2
*/
CONSTANT("O(1)"),
/**
* Inverse Ackermann. Example: Amortized time per operation using a disjoint set.
*
* O(α(n))
*
* @since 1.1.2
*/
INVERSE_ACKERMANN("O(a(n))"),
/**
* Iterated logarithmic. Example:
* Distributed coloring of cycles.
*
* O(log* n)
*
* @since 1.1.2
*/
ITERATED_LOGARITHMIC("O(log* n)"),
/**
* Log-logarithmic. Example: Amortized time per operation using a bounded priority queue.
*
* O(log log n)
*
* @since 1.1.2
*/
LOG_LOGARITHMIC("O(log log n)"),
/**
* Logarithmic. Example: Binary search.
*
* O(log n)
*
* @since 1.1.2
*/
LOGARITHMIC("O(log n)"),
/**
* Polylogarithmic.
*
* poly(log n)
*
* @since 1.1.2
*/
POLYLOGARITHMIC("poly(log n)"),
/**
* Fractional power. Example: Searching in a kd-tree.
*
* O(nc) where 0 < c < 1
*
* @since 1.1.2
*/
FRACTIONAL_POWER("O(n^c)"),
/**
* Linear. Example: Finding the smallest or largest item in an unsorted array.
*
* O(n)
*
* @since 1.1.2
*/
LINEAR("O(n)"),
/**
* n log star n. Example: Seidel's polygon triangulation algorithm.
*
* O(n log* n)
*
* @since 1.1.2
*/
N_LOG_STAR_N("O(n log* n)"),
/**
* Lineqarithmic. Example: Fastest possible comparison sort.
*
* O(n log n)
*
* @since 1.1.2
*/
LINEARITHMIC("O(n log n)"),
/**
* Quadratic. Example: Bubble sort; Insertion sort; Direct convolution.
*
* O(n2)
*
* @since 1.1.2
*/
QUADRATIC("O(n^2)"),
/**
* Cubic. Example: Naive multiplication of two n×n matrices. Calculating partial correlation.
*
* O(n3)
*
* @since 1.1.2
*/
CUBIC("O(n^3)"),
/**
* Polynomial. Example: Karmarkar's
* algorithm for linear programming; AKS primality test.
*
* 2O(log n) = poly(n)
*
* @since 1.1.2
*/
POLYNOMIAL("poly(n)"),
/**
* Quasi-polinomial. Example: Best-known O(log2 n)-approximation algorithm for the directed
* Steiner tree problem.
*
* 2poly(log n)
*
* @since 1.1.2
*/
QUASI_POLYNOMIAL("2^poly(log n)"),
/**
* Sub-exponential. Example: Assuming complexity theoretic conjectures, BPP is contained in
* SUBEXP.
*
* O(2nε) for all ε > 0
*
* @since 1.1.2
*/
SUB_EXPONENTIAL("O(2^n^e)"),
/**
* Exponential. Example: Solving matrix chain multiplication via brute-force search.
*
* 2O(n)
*
* @since 1.1.2
*/
EXPONENTIAL("2^O(n)"),
/**
* Factorial. Example: Solving the traveling salesman problem via brute-force search.
*
* O(n!)
*
* @since 1.1.2
*/
FACTORIAL("O(n!)"),
/**
* Double exponential. Example: Deciding the truth of a given statement in Presburger
* arithmetic.
*
* 22poly(n)
*
* @since 1.1.2
*/
DOUBLE_EXPONENTIAL("2^2^poly(n)");
private final String formula;
Complexity(@Nonnull final String formula) {
this.formula = formula;
}
/**
* Get the formula.
*
* @return formula as string
* @since 1.1.2
*/
@Nonnull
public String getFormula() {
return this.formula;
}
@Override
@Nonnull
public String toString() {
return this.formula;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy