All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.seleniumtests.util.imaging.ImageDetector Maven / Gradle / Ivy

/**
 * Orignal work: Copyright 2015 www.seleniumtests.com
 * Modified work: Copyright 2016 www.infotel.com
 * 				Copyright 2017-2019 B.Hecquet
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.seleniumtests.util.imaging;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.SwingConstants;
import javax.swing.WindowConstants;

import org.apache.logging.log4j.Logger;
import org.opencv.calib3d.Calib3d;
import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.DMatch;
import org.opencv.core.KeyPoint;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.FeatureDetector;
import org.opencv.features2d.Features2d;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.openqa.selenium.Rectangle;

import com.seleniumtests.customexception.ConfigurationException;
import com.seleniumtests.customexception.ImageSearchException;
import com.seleniumtests.util.logging.SeleniumRobotLogger;

/**
 * Class made for detecting an image inside an other one
 * It uses openCV to look for the objectImage inside the sceneImage
 * Rotations and resizing are supported
 * @author behe
 *
 */
public class ImageDetector {
	
	private Rectangle detectedRectangle;
	private boolean computed = false;
	private long rotationAngle;
	private File sceneImage;
	private File objectImage;
	private boolean debug = false;
	private double detectionThreshold = 0.05;
	private Mat imgMatch = new Mat();
	private double sizeRatio;
	private static Logger logger = SeleniumRobotLogger.getLogger(ImageDetector.class);
	
	// load openCV
	// In case of "UnsatisfiedLinkError, library already loaded in another class loader", during unit tests, check that 
	// this class or a calling one is not "prepared" through PowerMockito (which reloads the class in another class loader)
	static {
		nu.pattern.OpenCV.loadLocally();
	}
	
	class TemplateMatchProperties {
		

		private Point matchLoc;
		private Integer matchScale;
		private Double matchValue;
		private boolean active;
		
		public TemplateMatchProperties() {
			matchLoc = null;
			matchScale = null;
			matchValue = null;
			active = false;
		}
		
		public TemplateMatchProperties(Point loc, Double value, Integer scale) {
			matchLoc = loc;
			matchScale = scale;
			matchValue = value;
			active = true;
		}
		
		@Override
		public String toString() {
			return String.format("%s - %s: %.2f", matchLoc, matchScale, matchValue);
		}
		
		public Double getDoubleScale() {
			return matchScale != null ? matchScale / 1000.0: null;
		}

		public Point getMatchLoc() {
			return matchLoc;
		}

		public Integer getMatchScale() {
			return matchScale;
		}

		public Double getMatchValue() {
			return matchValue;
		}

		public boolean isActive() {
			return active;
		}
		
		public void setActive(boolean active) {
			this.active = active;
		}
	}
	
	/**
	 * Allow to test Image matching directly outside of a test. Run it with:
	 * {@code ImageDetector   }
	 *
	 * @arg sceneImage			the image in which we want to detect an object
	 * @arg objectImage			the object we want to detect
	 * @arg detectionThreshold	default: 0.05. A double between 0 and 1. The higher the value is, less precise the detector will be. e.g: with 0.5, it can find matching that do not fully correspond to the searched object.
	 * 								increase this value only if the detector cannot find matching
	 */
	public static void main(String[] args) {
		ImageDetector detector = new ImageDetector(new File(args[0]), new File(args[1]), new Double(args[2]));
		
		double matchValue = detector.detectExactZoneWithScale();
		Rectangle detectedObjectRectangle = detector.getDetectedRectangle();
		System.out.println(String.format("Detected Zone (Top, Left, Width, Height): (%d, %d, %d, %d)", detectedObjectRectangle.y, detectedObjectRectangle.x, detectedObjectRectangle.width, detectedObjectRectangle.height));
		double pictureSizeRatio = detector.getSizeRatio();
		System.out.println("Aspect ratio: " + pictureSizeRatio);
		System.out.println("Match value: " + matchValue);
	}
	
	public ImageDetector() {
		// do nothing, only for test
	}
	
	public ImageDetector(File sceneImage, File objectImage) {
		this(sceneImage, objectImage, 0.05);
	}
	
	/**
	 * Contructor
	 * @param sceneImage			the image in which we want to detect an object
	 * @param objectImage			the object we want to detect
	 * @param detectionThreshold	default: 0.05. A double between 0 and 1. The higher the value is, less precise the detector will be. e.g: with 0.5, it can find matching that do not fully correspond to the searched object.
	 * 								increase this value only if the detector cannot find matching
	 */
	public ImageDetector(File sceneImage, File objectImage, double detectionThreshold) {
		setSceneImage(sceneImage);
		setObjectImage(objectImage);
		
		if (detectionThreshold < 0 || detectionThreshold > 1) {
			throw new ConfigurationException("Image detector threshold MUST be between 0 (very stric in search) and 1 (not stric at all)");
		}
		
		this.detectionThreshold = detectionThreshold;
	}
	
	/**
	 * Compute the rectangle where the searched picture is and the rotation angle between both images
	 * Throw {@link ImageSearchException} if picture is not found
	 * @return
	 * @Deprecated Kept here for information, but open CV 3 does not include SURF anymore for java build
	 */
	public void detectCorrespondingZone() {
		Mat objectImageMat = Imgcodecs.imread(objectImage.getAbsolutePath(), Imgcodecs.CV_LOAD_IMAGE_COLOR);
		Mat sceneImageMat = Imgcodecs.imread(sceneImage.getAbsolutePath(), Imgcodecs.CV_LOAD_IMAGE_COLOR);
		FeatureDetector surf = FeatureDetector.create(FeatureDetector.SURF);
		
		MatOfKeyPoint objectKeyPoints = new MatOfKeyPoint();
		MatOfKeyPoint sceneKeyPoints = new MatOfKeyPoint();
		
		surf.detect(objectImageMat, objectKeyPoints);
		surf.detect(sceneImageMat, sceneKeyPoints);
		
		DescriptorExtractor surfExtractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
		Mat objectDescriptor = new Mat();
		Mat sceneDescriptor = new Mat();
		surfExtractor.compute(objectImageMat, objectKeyPoints, objectDescriptor);
		surfExtractor.compute(sceneImageMat, sceneKeyPoints, sceneDescriptor);
		
		try {
			Mat outImage = new Mat();
			Features2d.drawKeypoints(objectImageMat, objectKeyPoints, outImage);
			File tmpImg = File.createTempFile("img", ".png");
			tmpImg.deleteOnExit();
			String tempFile = tmpImg.getAbsolutePath();
			
			writeComparisonPictureToFile(tempFile, outImage);
		} catch (IOException e) {
			
		}
		
		// http://stackoverflow.com/questions/29828849/flann-for-opencv-java
		DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
		MatOfDMatch matches = new MatOfDMatch();
		
		if (objectKeyPoints.toList().isEmpty()) {
			throw new ImageSearchException("No keypoints in object to search, check it's not uniformly coloured: " + objectImage.getAbsolutePath());
		}
		if (sceneKeyPoints.toList().isEmpty()) {
			throw new ImageSearchException("No keypoints in scene, check it's not uniformly coloured: " + sceneImage.getAbsolutePath());
		}
		if (objectDescriptor.type() != CvType.CV_32F) {
			objectDescriptor.convertTo(objectDescriptor, CvType.CV_32F);
		}
		if (sceneDescriptor.type() != CvType.CV_32F) {
			sceneDescriptor.convertTo(sceneDescriptor, CvType.CV_32F);
		}
			
		matcher.match( objectDescriptor, sceneDescriptor, matches );
		
		double maxDist = 0; 
		double minDist = 10000;
		
		for( int i = 0; i < objectDescriptor.rows(); i++ ) { 
			double dist = matches.toList().get(i).distance;
		    if ( dist < minDist ) {
		    	minDist = dist;
		    }
		    if( dist > maxDist )  {
		    	maxDist = dist;
		    }
		}
		
		logger.debug("-- Max dist : " + maxDist);
		logger.debug("-- Min dist : " + minDist);
		
		LinkedList goodMatches = new LinkedList<>();
		MatOfDMatch gm = new MatOfDMatch();

		for(int i = 0; i < objectDescriptor.rows(); i++){
		    if(matches.toList().get(i).distance < detectionThreshold){
		        goodMatches.addLast(matches.toList().get(i));
		    }
		}
		gm.fromList(goodMatches);

		Features2d.drawMatches(objectImageMat, objectKeyPoints, sceneImageMat, sceneKeyPoints, 
				gm, imgMatch, Scalar.all(-1), Scalar.all(-1), new MatOfByte(), Features2d.NOT_DRAW_SINGLE_POINTS);
		
		if (goodMatches.isEmpty()) {
			throw new ImageSearchException("Cannot find matching zone");
		}
		
		LinkedList objList = new LinkedList<>();
		LinkedList sceneList = new LinkedList<>();

		List objectKeyPointsList = objectKeyPoints.toList();
		List sceneKeyPointsList = sceneKeyPoints.toList();

		for(int i = 0; i matches = Collections.synchronizedList(new ArrayList<>());
        
        Map scaleSteps = new LinkedHashMap<>();
        
        if (scaleImage) {
        	scaleSteps.put(100, Math.max(0.1, 0.6 - detectionThreshold));
        	scaleSteps.put(50, Math.max(0.1, 0.7 - detectionThreshold));
	        scaleSteps.put(25, Math.max(0.1, 0.8 - detectionThreshold));    
        } else {
        	scaleSteps.put(100, Math.max(0.1, 0.8 - detectionThreshold));
        }
        
        int currentStep = 100;
        
        Set computedScales = new HashSet<>();
        
        while (currentStep >= 25) {
        	final double currentThreshold = scaleSteps.get(currentStep);
        	
        	// first loop
        	Set localScales = Collections.synchronizedSet(new HashSet<>());
        	if (currentStep == 100 && scaleImage) {
        		for (int scale=200; scale < 1200; scale += currentStep) {
        			localScales.add(scale);
                }
        		
        	// no scaling requested, keep only 100%
        	} else if (currentStep == 100) {
        		localScales.add(1000);
        	} else {
        		if (matches.isEmpty()) {
        			throw new ImageSearchException("no matches");
        		}
	        	for (TemplateMatchProperties tmpM: matches) {
	        		if (tmpM.isActive()) {
	        			localScales.add(tmpM.getMatchScale() - currentStep);
	        			localScales.add(tmpM.getMatchScale() + currentStep);
	        		}
	        	}
        	}
        	
        	// extract the matching from images, for each scale
        	extractMatching(sceneImageMat, objectImageMat, matches, computedScales, currentThreshold, localScales);
    		
    		
        	// shortcut if we find a very good match
    		double cleanThreshold = currentThreshold;
    		matches.sort((TemplateMatchProperties t1, TemplateMatchProperties t2) -> t1.getMatchValue().compareTo(t2.getMatchValue()));
    		Collections.reverse(matches); // reverse the list as we want the first element to be the best match
    		if (!matches.isEmpty() && matches.get(0).getMatchValue() > 0.9) {
    			cleanThreshold = 0.9;
    			currentStep = Math.min(currentStep, 50);
    		} 
    		currentStep = currentStep / 2;

    		
    		// clean matches from too low matching values
    		for (TemplateMatchProperties t: matches) {
    			if (t.getMatchValue() < cleanThreshold) {
        			t.setActive(false);
        		}
    		}
    		
    		// if scaling is not requested, stop here
    		if (!scaleImage) {
    			break;
    		}
        }
		
		// get the best match
		matches.sort((TemplateMatchProperties t1, TemplateMatchProperties t2) -> t1.getMatchValue().compareTo(t2.getMatchValue()));
		Collections.reverse(matches); // reverse the list as we want the first element to be the best match
		if (!matches.isEmpty()) {
			TemplateMatchProperties bestMatch = matches.get(0);
			if (bestMatch.getMatchValue() < 1 - detectionThreshold) {
				throw new ImageSearchException(String.format("No match found for threshold %.2f, match found with value %.2f", 1 - detectionThreshold, bestMatch.getMatchValue()));
			}
	
			detectedRectangle = new Rectangle((int)(bestMatch.getMatchLoc().x / bestMatch.getDoubleScale()), 
												(int)(bestMatch.getMatchLoc().y / bestMatch.getDoubleScale()), 
												(int)(objectImageMat.rows() / bestMatch.getDoubleScale()), 
												(int)(objectImageMat.cols() / bestMatch.getDoubleScale()));
			
			if (debug) {
				try {
					Imgproc.rectangle(sceneImageMat, new Point(detectedRectangle.x, detectedRectangle.y), new Point(detectedRectangle.x + detectedRectangle.width,
						detectedRectangle.y + detectedRectangle.height), new Scalar(0, 255, 0));
				
					showResultingPicture(sceneImageMat);
				} catch (IOException e) {
				}
			}
	        rotationAngle = 0;
	        sizeRatio = detectedRectangle.width / (double)objectImageMat.cols();
			return bestMatch.getMatchValue();
	        
		} else {
			throw new ImageSearchException("no matching has been found");
		}
      
	}

	/**
	 * Extract matching in parallel
	 * @param sceneImageMat
	 * @param objectImageMat
	 * @param matches
	 * @param computedScales
	 * @param currentThreshold
	 * @param localScales
	 */
	private void extractMatching(Mat sceneImageMat, Mat objectImageMat, List matches,
			Set computedScales, final double currentThreshold, Set localScales) {
		ExecutorService executorService = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
		for (int scale: localScales) {
			if (computedScales.contains(scale)) {
				continue;
			}
			computedScales.add(scale);

			// resize to scale factor
			final int localScale = scale;
			Size sz = new Size(sceneImageMat.cols() * scale / 1000.0, sceneImageMat.rows() * localScale / 1000.0);
			
			// skip if resized image is smaller than object
			if (sz.width < objectImageMat.cols() || sz.height < objectImageMat.rows()) {
				continue;
			}

			executorService.submit(() -> {
				
				Mat resizeSceneImageMat = new Mat();
				Imgproc.resize( sceneImageMat, resizeSceneImageMat, sz );
				
		        try {
		        	TemplateMatchProperties match = detectExactZone2(resizeSceneImageMat, objectImageMat, localScale, currentThreshold);
		        	matches.add(match);
		      	} catch (ImageSearchException e) {
		      		// no match found
				}
		        
		      });
		}
      
		executorService.shutdown();
		try {
			executorService.awaitTermination(10, TimeUnit.SECONDS);
		} catch (Exception e) {
			logger.info("Could not compute scale within 10 seconds", e);
			Thread.currentThread().interrupt();
		}
	}
	
	private MinMaxLocResult getBestTemplateMatching(int matchMethod, Mat sceneImageMat, Mat objectImageMat) {
		
        // / Create the result matrix
        int resultCols = sceneImageMat.cols() - objectImageMat.cols() + 1;
        int resultRows = sceneImageMat.rows() - objectImageMat.rows() + 1;
        Mat result = new Mat(resultRows, resultCols, CvType.CV_32FC1);

        // / Do the Matching and Normalize
        Imgproc.matchTemplate(sceneImageMat, objectImageMat, result, matchMethod);

        // / Localizing the best match with minMaxLoc        
        return Core.minMaxLoc(result);
	}
	
	/**
	 * This method uses template matching for exact comparison
	 * It means that no resizing or rotation can be detected
	 * @throws IOException
	 */
	private TemplateMatchProperties detectExactZone2(Mat sceneImageMat, Mat objectImageMat, int scale, double threshold) {
		
		// with this match method, higher value is better. TM_SQDIFF would imply lower as better
		int matchMethod = Imgproc.TM_CCOEFF_NORMED;
		 
		MinMaxLocResult mmr = getBestTemplateMatching(matchMethod, sceneImageMat, objectImageMat);
	
		if (mmr.maxVal < threshold) {
			throw new ImageSearchException("match not found");
		}
		return new TemplateMatchProperties(mmr.maxLoc, mmr.maxVal, scale);
	}
	
	/**
	 * returns angle between vectors defined by 2 points
	 * @param vec1p1	first point of first vector
	 * @param vec1p2	second point of first vector
	 * @param vec2p1	first point of second vector
	 * @param vec2p2	second point of second vector
	 * @return	an angle between 0 and 360°
	 */
	protected long getAngleBetweenVectors(Point vec1p1, Point vec1p2, Point vec2p1, Point vec2p2) {
		long realAngle = (Math.round(Math.toDegrees(Math.atan2(vec1p2.y - vec1p1.y, vec1p2.x - vec1p1.x)
				- Math.atan2(vec2p2.y - vec2p1.y, vec2p2.x - vec2p1.x))) + 360) % 360;
		long approximateAngle = (realAngle + 1) % 90;
		
		// for angles near a multiple of 90 (1° of tolerance), return an angle of 0, 90, 180 or 270
		if (approximateAngle < 3) {
			return realAngle - approximateAngle + 1;
		} else {
			return realAngle;
		}
	}
	
	/**
	 * Check that rotation angle between object and zone detected in scene is a multiple of 90°
	 * @param p1	corner corresponding to top left corner of origin possibly rotated
	 * @param p2	corner corresponding to top right corner of origin possibly rotated
	 * @param p3	corner corresponding to bottom right corner of origin possibly rotated
	 * @param p4	corner corresponding to bottom left corner of origin possibly rotated
	 * @param po1	top left corner of object picture
	 * @param po2	top right corner of object picture
	 * @param po3	bottom right corner of object picture
	 * @param po4	bottom left corner of object picture
	 */
	protected void checkRotationAngle(Point p1, Point p2, Point p3, Point p4, Point po1, Point po2, Point po3, Point po4) {
		rotationAngle = getAngleBetweenVectors(p1, p2, po1, po2);
		if (rotationAngle % 90 != 0) {
			throw new ImageSearchException("only rotations of 90, 180 or 270 are supported");
		}
		logger.debug("rotation angle is " + rotationAngle);
		
		// check that the translated zone is a rectangle
		if (getAngleBetweenVectors(p2, p3, po2, po3) != rotationAngle
				||getAngleBetweenVectors(p3, p4, po3, po4) != rotationAngle 
				||getAngleBetweenVectors(p4, p1, po4, po1) != rotationAngle 
				) {
			throw new ImageSearchException("source image transform does not produce a rectangle");
		}
	}
	
	/**
	 * In case angles are not strictly multiples of 90°, move points so that we have a real rectangle
	 * 
	 * @param p1
	 * @param p2
	 * @param p3
	 * @param p4
	 */
	protected void reworkOnScenePoints(Point p1, Point p2, Point p3, Point p4) {
		if (rotationAngle == 0 || rotationAngle == 180) {
			p1.y = p2.y = (p1.y + p2.y) / 2;
			p3.y = p4.y = (p3.y + p4.y) / 2;
			p1.x = p4.x = (p1.x + p4.x) / 2;
			p2.x = p3.x = (p2.x + p3.x) / 2;
		} else {
			p1.y = p4.y = (p1.y + p4.y) / 2;
			p2.y = p3.y = (p3.y + p2.y) / 2;
			p1.x = p2.x = (p1.x + p2.x) / 2;
			p4.x = p3.x = (p4.x + p3.x) / 2;
		}
	}
	
	/**
	 * Check aspect ratio between the searched picture (object) and the detected zone in the scene picture
	 * Width and Height ratios must be the same
	 * @param p1	corner corresponding to top left corner of origin possibly rotated
	 * @param p2	corner corresponding to top right corner of origin possibly rotated
	 * @param p4	corner corresponding to bottom left corner of origin possibly rotated
	 * @param po1	top left corner of object picture
	 * @param po2	top right corner of object picture
	 * @param po4	bottom left corner of object picture
	 */
	protected void checkDetectionZoneAspectRatio(Point p1, Point p2, Point p4, Point po1, Point po2, Point po4) {
		double widthRatio;
		double heightRatio;
		if (rotationAngle == 90 || rotationAngle == 270) {
			widthRatio = Math.abs(p1.y - p2.y) / Math.abs(po1.x - po2.x);
			heightRatio = Math.abs(p1.x - p4.x) / Math.abs(po1.y - po4.y);
			
		} else {
			widthRatio = Math.abs(p1.x - p2.x) / Math.abs(po1.x - po2.x);
			heightRatio = Math.abs(p1.y - p4.y) / Math.abs(po1.y - po4.y);
			
		}
		if (Math.abs(widthRatio - heightRatio) > 0.1) {
			throw new ImageSearchException("Aspect ratio between source and detected image is not the same");
		} else {
			logger.debug("Transform ratio is " + Math.round(widthRatio * 100) / 100.0);
			sizeRatio = widthRatio;
		}
	}
	
	/**
	 * Record detected zone as a rectangle
	 * Take into account the rotating angle so that resulting rectangle correspond to points (origin point depends on rotation)
	 * @param p1	corner corresponding to top left corner of origin possibly rotated
	 * @param p2	corner corresponding to top right corner of origin possibly rotated
	 * @param p3	corner corresponding to bottom right corner of origin possibly rotated
	 * @param p4	corner corresponding to bottom left corner of origin possibly rotated
	 */
	protected void recordDetectedRectangle(Point p1, Point p2, Point p3, Point p4) {
		switch ((int)rotationAngle) {
		case 0:
			detectedRectangle = new Rectangle((int)p1.x, (int)p1.y, (int)Math.abs(p4.y - p1.y), (int)Math.abs(p2.x - p1.x));
			break;
		case 90:
			detectedRectangle = new Rectangle((int)p4.x, (int)p4.y, (int)Math.abs(p3.y - p4.y), (int)Math.abs(p1.x - p4.x));
			break;
		case 180:
			detectedRectangle = new Rectangle((int)p3.x, (int)p3.y, (int)Math.abs(p2.y - p3.y), (int)Math.abs(p4.x - p3.x));
			break;
		case 270:
			detectedRectangle = new Rectangle((int)p2.x, (int)p2.y, (int)Math.abs(p1.y - p2.y), (int)Math.abs(p3.x - p2.x));
			break;
		default:
			break;
		}
	}
	
	private void showResultingPicture(Mat img) throws IOException {
		File imgFile = File.createTempFile("img", ".png");
		imgFile.deleteOnExit();
		String tempFile = imgFile.getAbsolutePath();
		writeComparisonPictureToFile(tempFile, img);
		showResultingImage(tempFile);
	}
	
	/**
	 * File path should end with an image extension (jpg, png)
	 * @param filePath
	 */
	public void writeComparisonPictureToFile(String filePath, Mat img) {
		if (filePath.toLowerCase().endsWith(".jpg") || filePath.toLowerCase().endsWith(".png")) {
			Imgcodecs.imwrite(filePath, img);
		} else {
			throw new ImageSearchException("only .JPG and .PNG files are supported");
		}
	}
	
	/**
	 * Method to display the result of image detection
	 * @param imgStr
	 * @param m
	 */
	public void showResultingImage(String filePath) {
		JFrame frame = new JFrame("My GUI");
		frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
	
		frame.setResizable(true);
		frame.setLocationRelativeTo(null);
	
		// Inserts the image icon
		ImageIcon image = new ImageIcon(filePath);
		frame.setSize(image.getIconWidth()+10,image.getIconHeight()+35);
		// Draw the Image data into the BufferedImage
		JLabel label1 = new JLabel(" ", image, SwingConstants.CENTER);
		frame.getContentPane().add(label1);
	
		frame.validate();
		frame.setVisible(true);
	}
	

	public Rectangle getDetectedRectangle() {
		return detectedRectangle;
	}

	public boolean isComputed() {
		return computed;
	}

	public long getRotationAngle() {
		return rotationAngle;
	}

	public void setRotationAngle(long rotationAngle) {
		this.rotationAngle = rotationAngle;
	}

	/**
	 * Returns the ratio between the detected image (in scene) and the source image (to find)
	 * @return
	 */
	public double getSizeRatio() {
		return sizeRatio;
	}

	public void setDebug(boolean debug) {
		this.debug = debug;
	}

	public void setSceneImage(File sceneImage) {
		if (!sceneImage.exists()) {
			throw new ImageSearchException(String.format("File for object to detect %s does not exist", sceneImage));
		}
		this.sceneImage = sceneImage;
	}

	public void setObjectImage(File objectImage) {
		if (objectImage == null) {
			throw new ImageSearchException("Object image file is null");
		}
		if (!objectImage.exists()) {
			throw new ImageSearchException(String.format("File for scene to detect object at path '%s' does not exist", objectImage));
		}
		this.objectImage = objectImage;
	}

	public void setDetectionThreshold(double detectionThreshold) {
		this.detectionThreshold = detectionThreshold;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy