
org.apache.spark.ml.DLEstimatorBase.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared.HasLabelCol
import org.apache.spark.ml.linalg.{Vector, VectorUDT}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Dataset, Row}
/**
* Handle different Vector types in Spark 1.5/1.6 and Spark 2.0+.
* Support both ML Vector and MLlib Vector for Spark 2.0+.
*/
trait VectorCompatibility {
val validVectorTypes = Seq(new VectorUDT, new org.apache.spark.mllib.linalg.VectorUDT)
def getVectorSeq(row: Row, colType: DataType, index: Int): Seq[AnyVal] = {
if (colType == new VectorUDT) {
row.getAs[Vector](index).toArray.toSeq
} else if (colType == new org.apache.spark.mllib.linalg.VectorUDT) {
row.getAs[org.apache.spark.mllib.linalg.Vector](index).toArray.toSeq
} else {
throw new IllegalArgumentException(
s"$colType is not a supported vector type.")
}
}
}
/**
*A wrapper from org.apache.spark.ml.Estimator
* Extends MLEstimator and override process to gain compatibility with
* both spark 1.5 and spark 2.0.
*/
abstract class DLEstimatorBase[Learner <: DLEstimatorBase[Learner, M],
M <: DLTransformerBase[M]]
extends Estimator[M] with HasLabelCol {
protected def internalFit(dataFrame: DataFrame): M
override def fit(dataset: Dataset[_]): M = {
transformSchema(dataset.schema, logging = true)
internalFit(dataset.toDF())
}
override def copy(extra: ParamMap): Learner = defaultCopy(extra)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy