com.intel.analytics.bigdl.nn.Narrow.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.Tensor
import scala.reflect.ClassTag
/**
* Narrow is application of narrow operation in a module.
* The module further supports a negative length in order to handle inputs with an unknown size.
*/
@SerialVersionUID(988790441682879293L)
class Narrow[T: ClassTag](dimension: Int, offset: Int, length: Int = 1)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val dim = if (dimension < 0) input.dim() + dimension + 1 else dimension
val length = if (this.length < 0) input.size(dim) - offset + this.length + 2 else this.length
val outputNarrow = input.narrow(dim, offset, length)
output.resizeAs(outputNarrow).copy(outputNarrow)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val dim = if (dimension < 0) input.dim() + dimension + 1 else dimension
val length = if (this.length < 0) input.size(dim) - offset + this.length + 2 else this.length
gradInput.resizeAs(input).zero()
gradInput.narrow(dim, offset, length).copy(gradOutput)
gradInput
}
override def toString(): String = {
s"nn.Narrow($dimension, $offset, $length)"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Narrow[T]]
override def equals(other: Any): Boolean = other match {
case that: Narrow[T] =>
super.equals(that) &&
(that canEqual this)
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode())
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Narrow {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int,
offset: Int,
length: Int = 1)(implicit ev: TensorNumeric[T]) : Narrow[T] = {
new Narrow[T](dimension, offset, length)
}
}