com.intel.analytics.bigdl.nn.Squeeze.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Delete singleton all dimensions or a specific dim.
*
* @param dim Optional. The dimension to be delete. Default: delete all dimensions.
* @param numInputDims Optional. If in a batch model, set to the inputDims.
*/
@SerialVersionUID(7998127436291978408L)
class Squeeze[@specialized(Float, Double) T: ClassTag](
var dim : Int = Int.MinValue,
var numInputDims: Int = Int.MinValue
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
def setNumInputDims(numInputDims: Int): Unit = {
this.numInputDims = numInputDims
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
var addOne = false
if (numInputDims != Int.MinValue && input.dim() == numInputDims + 1) {
if (dim != Int.MinValue) {
dim += 1
} else if (input.size(1) == 1) {
addOne = true // in case of miniBatch of size 1
}
}
output.set(input)
if (dim != Int.MinValue) output.squeeze(dim) else output.squeeze()
if (addOne) {
val s = output.size()
s(1) = 1
output.set(output.view(s))
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.nElement() == gradOutput.nElement())
gradInput.set(gradOutput.view(input.size()))
gradInput
}
override def toString(): String = {
s"nn.Squeeze(${if (dim != Int.MinValue) dim + ", " else ""}" +
s"${if (numInputDims != Int.MinValue) numInputDims else ""})"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Squeeze[T]]
override def equals(other: Any): Boolean = other match {
case that: Squeeze[T] =>
super.equals(that) &&
(that canEqual this) &&
dim == that.dim &&
numInputDims == that.numInputDims
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dim, numInputDims)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Squeeze {
def apply[@specialized(Float, Double) T: ClassTag](
dim : Int = Int.MinValue,
numInputDims: Int = Int.MinValue)(implicit ev: TensorNumeric[T]) : Squeeze[T] = {
new Squeeze[T](dim, numInputDims)
}
}