com.intel.analytics.bigdl.nn.Replicate.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Replicate repeats input `nFeatures` times along its `dim` dimension
*
* Notice: No memory copy, it set the stride along the `dim`-th dimension to zero.
*
* @param nFeatures replicate times.
* @param dim dimension to be replicated.
* @param nDim specify the number of non-batch dimensions.
*/
@SerialVersionUID( - 7255265230723863741L)
class Replicate[T: ClassTag](
val nFeatures : Int,
val dim : Int = 1,
val nDim : Int = Int.MaxValue)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
require(dim > 0, "Can only replicate across positive integer dimensions.")
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(dim <= input.dim() + 1,
s"Not enough input dimensions to replicate along dimension $dim.")
val batchOffset = if (input.dim() > nDim) 1 else 0
val rDim = dim + batchOffset
val size = new Array[Int](input.dim() + 1)
size(rDim - 1) = nFeatures
val stride = new Array[Int](input.dim() + 1)
stride(rDim - 1) = 0
var i = 1
while (i <= input.dim()) {
val offset = if (i >= rDim) 1 else 0
size(i + offset - 1) = input.size(i)
stride(i + offset - 1) = input.stride(i)
i += 1
}
output.set(input.storage(), input.storageOffset(), size, stride)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input).zero()
val batchOffset = if (input.dim() > nDim) 1 else 0
val rDim = dim + batchOffset
val size = new Array[Int](input.dim() + 1)
size(rDim - 1) = 1
var i = 1
while (i <= input.dim()) {
val offset = if (i >= rDim) 1 else 0
size(i + offset - 1) = input.size(i)
i += 1
}
gradInput.view(size).sum(gradOutput, rDim)
gradInput
}
override def toString(): String = {
s"${getPrintName}($nFeatures, $dim${if (nDim != Int.MaxValue) ", " + nDim else ""})"
}
}
object Replicate {
def apply[@specialized(Float, Double) T: ClassTag](
nFeatures : Int,
dim : Int = 1,
nDim : Int = Int.MaxValue)(implicit ev: TensorNumeric[T]) : Replicate[T] = {
new Replicate[T](nFeatures, dim, nDim)
}
}