com.intel.analytics.bigdl.nn.SelectTable.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import scala.reflect.ClassTag
/**
* Creates a module that takes a table as input and outputs the element at index `index`
* (positive or negative). This can be either a table or a Tensor.
* The gradients of the non-index elements are zeroed Tensors of the same size.
* This is true regardless of the depth of the encapsulated Tensor as the function used
* internally to do so is recursive.
* @param index the index to be selected
*/
@SerialVersionUID(8787233248773612598L)
class SelectTable[T: ClassTag](
val index: Int)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Activity, T] {
override def updateOutput(input: Table): Activity = {
val index = if (this.index < 0) input.length() + this.index else this.index
require(input.contains(index), "index does not exist in the input table")
output = input[Activity](index)
output
}
override def updateGradInput(input: Table, gradOutput: Activity): Table = {
Utils.zeroTableCopy(gradInput, input)
val index = if (this.index < 0) {
input.length() + this.index + 1
} else {
this.index
}
Utils.recursiveCopy(gradInput(index), gradOutput)
require(gradInput.contains(index), "Index exceeds the size of input table")
gradInput
}
override def toString: String = s"SelectTable($index)"
override def canEqual(other: Any): Boolean = other.isInstanceOf[SelectTable[T]]
override def equals(other: Any): Boolean = other match {
case that: SelectTable[T] =>
super.equals(that) &&
(that canEqual this) &&
index == that.index
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), index)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object SelectTable {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int)(implicit ev: TensorNumeric[T]) : SelectTable[T] = {
new SelectTable[T](dimension)
}
}