com.intel.analytics.bigdl.nn.Squeeze.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Delete all singleton dimensions or a specific singleton dimension.
*
* @param dims Optional. If this dimension is singleton dimension, it will be deleted.
* The first index starts from 1. Default: delete all dimensions.
* @param batchMode Optional. If the input is batch. Default is false.
*/
@SerialVersionUID(7998127436291978408L)
class Squeeze[T: ClassTag](
val dims : Array[Int] = null, val batchMode: Boolean = false
)(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
if (batchMode && dims != null) {
var i = 0
while(i < dims.length) {
dims(i) += 1
i += 1
}
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.set(input)
if (dims != null) {
var i = 0
while(i < dims.length) {
output.squeeze(dims(i))
i += 1
}
} else {
output.squeeze()
}
if (batchMode && dims == null && input.size(1) == 1) {
output.addSingletonDimension()
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.nElement() == gradOutput.nElement())
gradInput.set(gradOutput.view(input.size()))
gradInput
}
override def toString(): String = {
s"${getPrintName}(${if (dims != null) dims.mkString(",") + ", " else ""}" +
s"${if (batchMode) "batch" else ""})"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Squeeze[T]]
override def equals(other: Any): Boolean = other match {
case that: Squeeze[T] =>
super.equals(that) &&
(that canEqual this) &&
(dims.zip(that.dims).map(a => a._1 == a._2).reduce(_ && _)) &&
batchMode == that.batchMode
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dims, batchMode)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Squeeze {
def apply[T: ClassTag](dim : Int = Int.MinValue,
numInputDims: Int = Int.MinValue)(implicit ev: TensorNumeric[T])
: Squeeze[T] = {
new Squeeze[T](Array(dim), numInputDims != Int.MinValue)
}
def apply[T: ClassTag](
dims : Array[Int], batchMode: Boolean)(implicit ev: TensorNumeric[T])
: Squeeze[T] = {
new Squeeze[T](dims.sortWith(_>_), batchMode)
}
}