Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.intel.analytics.bigdl.utils.TorchFile.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils
import java.io._
import java.nio._
import java.nio.file._
import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.{Storage, Tensor}
import scala.collection.mutable
/**
* torch object type
* @param typeId type id
*/
sealed abstract class TorchObject(val typeId: Int)
/**
* define some torch object types
*/
object TorchObject {
case object TYPE_NIL extends TorchObject(0)
case object TYPE_NUMBER extends TorchObject(1)
case object TYPE_FLOAT_TENSOR extends TorchObject(4)
case object TYPE_DOUBLE_TENSOR extends TorchObject(4)
case object TYPE_DOUBLE_STORAGE extends TorchObject(4)
case object TYPE_FLOAT_STORAGE extends TorchObject(4)
case object TYPE_LONG_STORAGE extends TorchObject(4)
case object TYPE_MODULE extends TorchObject(4)
case object TYPE_STRING extends TorchObject(2)
case object TYPE_BOOLEAN extends TorchObject(5)
case object TYPE_TABLE extends TorchObject(3)
}
object TorchFile {
import TorchObject._
private var i = 0
/**
* Load torch object from a torch binary file
*
* @param fileName file name.
* @return An instance of T
*/
def load[T](fileName: String): T = {
val path = Paths.get(fileName)
val rawData = ByteBuffer.wrap(Files.readAllBytes(path))
rawData.order(ByteOrder.LITTLE_ENDIAN)
val objects: mutable.Map[Int, Any] = new mutable.HashMap()
readObject(rawData, objects).asInstanceOf[T]
}
/**
* Save scala object into a torch binary file
*
* @param source The object to be saved.
* @param fileName file name to saving.
* @param objectType The object type.
* @param overWrite If overwrite.
*/
def save(
source: Any,
fileName: String,
objectType: TorchObject,
overWrite: Boolean = false): Unit = {
val file = new java.io.File(fileName)
if (file.exists()) {
require(file.isFile(), s"$fileName is not a file")
if (!overWrite) {
throw new FileAlreadyExistsException(fileName)
} else { // clear the file
val fw = new java.io.FileWriter(file)
fw.write("")
fw.close()
}
} else {
file.createNewFile()
}
val capacity = 300000
val buffer = ByteBuffer.allocate(capacity)
buffer.order(ByteOrder.LITTLE_ENDIAN)
// reset the saving index
i = 0
writeObject(source: Any, buffer, file.toPath, objectType)
}
private def flush(rawData: ByteBuffer, path: Path): Unit = {
if ((rawData.capacity() - rawData.position()) < 8) {
byteWrite(rawData, path)
}
}
private def byteWrite(rawData: ByteBuffer, path: Path): Unit = {
Files.write(path, rawData.array().slice(0, rawData.position()), StandardOpenOption.APPEND)
rawData.clear()
}
private def createInstanceFor(className: String, args: mutable.Seq[(Class[_], AnyRef)]): Any = {
val types = args.map(_._1).toArray
val values = args.map(_._2).toArray
val constructor = Class.forName(className).getDeclaredConstructor(types: _*)
constructor.setAccessible(true)
val obj = constructor.newInstance(values: _*)
obj
}
private def readModuleWithType[T: ClassTag](
moduleName: String,
elements: Table)(implicit ev: TensorNumeric[T]): Any = {
val bigdlName = if (moduleName.matches("cudnn.*")) {
moduleName.replace("cudnn", "nn") }
else {
moduleName
}
val module = bigdlName match {
case "nn.BatchNormalization" => readBatchNormalizationWithType(elements)
case "nn.CAddTable" => CAddTable(elements.getOrElse("inplace", false))
case "nn.Concat" => readConcatWithType(elements)
case "nn.ConcatTable" => readConcatTableWithType(elements)
case "nn.Dropout" => readDropoutWithType(elements)
case "nn.Linear" => readLinearWithType(elements)
case "nn.ReLU" => ReLU(elements("inplace").asInstanceOf[Boolean])
case "nn.Reshape" => Reshape(elements("size").asInstanceOf[Array[Int]])
case "nn.Sequential" => readSequentialModuleWithType[T](elements)
case "nn.SpatialMaxPooling" => readSpatialMaxPoolingWithType(elements)
case "nn.SpatialAveragePooling" => readSpatialAveragePoolingWithType(elements)
case "nn.SpatialBatchNormalization" => readSpatialBatchNormalizationWithType(elements)
case "nn.SpatialConvolution" => readSpatialConvolutionWithType(elements)
case "nn.SpatialConvolutionMap" => readSpatialConvolutionMapWithType(elements)
case "nn.SpatialConvolutionMM" => readSpatialConvolutionWithType(elements)
case "nn.SpatialZeroPadding" => readSpatialZeroPaddingWithType(elements)
case "nn.Threshold" => readThresholdWithType(elements)
case "nn.View" => readViewWithType(elements)
case _ => try {
val classTag =
if (elements[String]("_type") == "torch.FloatTensor" ||
elements[String]("_type") == "torch.CudaTensor") {
ClassTag.Float
} else {
ClassTag.Double
}
val bigDlName = "com.intel.analytics.bigdl." + moduleName
// Use reflection to load all parameter-free module
val args: Array[(Class[_], AnyRef)] = Array((classOf[ClassTag[_]], classTag),
(classOf[TensorNumeric[_]], ev))
createInstanceFor(bigDlName, args)
} catch {
case _: Throwable =>
throw new IllegalArgumentException(s"unsupported module $moduleName")
}
}
module
}
private def readModule(
moduleName: String,
rawData: ByteBuffer,
objects: mutable.Map[Int, Any]): Any = {
val elements = readObject(rawData, objects).asInstanceOf[Table]
val moduleType = elements.getOrElse("_type", "")
if(moduleType == "torch.FloatTensor" || moduleType == "torch.CudaTensor") {
readModuleWithType[Float](moduleName, elements)
} else if (moduleType == "torch.DoubleTensor" || moduleType == "torch.CudaDoubleTensor") {
readModuleWithType[Double](moduleName, elements)
} else {
throw new Error(s"unkown module type $moduleType")
}
}
private def readObject(rawData: ByteBuffer, objects: mutable.Map[Int, Any]): Any = {
val TYPE_NIL: Int = 0
val TYPE_NUMBER: Int = 1
val TYPE_STRING: Int = 2
val TYPE_TABLE: Int = 3
val TYPE_TORCH: Int = 4
val TYPE_BOOLEAN: Int = 5
val TYPE_FUNCTION: Int = 6
val TYPE_RECUR_FUNCTION: Int = 8
val LEGACY_TYPE_RECUR_FUNCTION: Int = 7
val typeId = rawData.getInt()
typeId match {
case TYPE_NIL => null
case TYPE_TORCH =>
val indexId = rawData.getInt()
if (objects.contains(indexId)) {
objects(indexId)
} else {
val (versionNumber, className) = readVersionAndClass(rawData)
val result = className match {
// read torch data
case "torch.FloatTensor" => readFloatTensor(rawData, objects)
case "torch.DoubleTensor" => readDoubleTensor(rawData, objects)
case "torch.LongTensor" => readLongTensor(rawData, objects)
case "torch.FloatStorage" => readFloatStorage(rawData)
case "torch.DoubleStorage" => readDoubleStorage(rawData)
case "torch.LongStorage" => readLongStorage(rawData)
// read cuda data
case "torch.CudaTensor" => readFloatTensor(rawData, objects)
case "torch.CudaDoubleTensor" => readDoubleTensor(rawData, objects)
case "torch.CudaLongTensor" => readLongTensor(rawData, objects)
case "torch.CudaStorage" => readFloatStorage(rawData)
case "torch.CudaDoubleStorage" => readDoubleStorage(rawData)
case "torch.CudaLongStorage" => readLongStorage(rawData)
// read modules
case _ => readModule(className, rawData, objects)
}
objects.put(indexId, result)
result
}
case TYPE_TABLE =>
val indexId = rawData.getInt()
if (objects.contains(indexId)) {
objects(indexId)
} else {
val result = readTable(rawData, objects)
objects.put(indexId, result)
result
}
case TYPE_NUMBER => readNumber(rawData)
case TYPE_STRING => readString(rawData)
case TYPE_BOOLEAN => readBoolean(rawData)
case _ => throw new UnsupportedOperationException(typeId.toString)
}
}
private def writeModule(
module: AbstractModule[_, _, _],
rawData: ByteBuffer, path: Path): Unit = {
module match {
case m: Linear[_] =>
writeVersionAndClass("V 1", "nn.Linear", rawData, path)
writeLinear(m, rawData, path)
case m: SpatialConvolution[_] =>
writeVersionAndClass("V 1", "nn.SpatialConvolutionMM", rawData, path)
writeSpatialConvolution(m, rawData, path)
case m: SpatialMaxPooling[_] =>
writeVersionAndClass("V 1", "nn.SpatialMaxPooling", rawData, path)
writeSpatialMaxPooling(m, rawData, path)
case m: ReLU[_] =>
writeVersionAndClass("V 1", "nn.ReLU", rawData, path)
writeReLU(m, rawData, path)
case m: Threshold[_] =>
writeVersionAndClass("V 1", "nn.Threshold", rawData, path)
writeThreshold(m, rawData, path)
case m: Concat[_] =>
writeVersionAndClass("V 1", "nn.Concat", rawData, path)
writeConcat(m, rawData, path)
case m: Sequential[_] =>
writeVersionAndClass("V 1", "nn.Sequential", rawData, path)
writeSequential(m, rawData, path)
case m: Dropout[_] =>
writeVersionAndClass("V 1", "nn.Dropout", rawData, path)
writeDropout(m, rawData, path)
case m: View[_] =>
writeVersionAndClass("V 1", "nn.View", rawData, path)
writeView(m, rawData, path)
case m: LogSoftMax[_] =>
writeVersionAndClass("V 1", "nn.LogSoftMax", rawData, path)
writeLogSoftMax(m, rawData, path)
case _ => throw new Error(s"Unimplemented module $module")
}
}
private def writeObject(
source: Any, rawData: ByteBuffer, path: Path, objectType: TorchObject): Unit = {
flush(rawData, path)
rawData.putInt(objectType.typeId)
objectType match {
case TYPE_NIL => return
case TYPE_FLOAT_TENSOR =>
i = i + 1
rawData.putInt(i)
writeVersionAndClass("V 1", "torch.FloatTensor", rawData, path)
writeFloatTensor(source.asInstanceOf[Tensor[Float]], rawData, path)
case TYPE_DOUBLE_TENSOR =>
i = i + 1
rawData.putInt(i)
writeVersionAndClass("V 1", "torch.DoubleTensor", rawData, path)
writeDoubleTensor(source.asInstanceOf[Tensor[Double]], rawData, path)
case TYPE_FLOAT_STORAGE =>
i = i + 1
rawData.putInt(i)
writeVersionAndClass("V 1", "torch.FloatStorage", rawData, path)
writeFloatStorage(source.asInstanceOf[Tensor[Float]], rawData, path)
case TYPE_DOUBLE_STORAGE =>
i = i + 1
rawData.putInt(i)
writeVersionAndClass("V 1", "torch.DoubleStorage", rawData, path)
writeDoubleStorage(source.asInstanceOf[Tensor[Double]], rawData, path)
case TYPE_LONG_STORAGE =>
i = i + 1
rawData.putInt(i)
writeVersionAndClass("V 1", "torch.LongStorage", rawData, path)
writeLongStorage(source.asInstanceOf[Array[Int]], rawData, path)
case TYPE_NUMBER => writeNumber(source.asInstanceOf[Double], rawData, path)
case TYPE_STRING => writeString(source.asInstanceOf[String], rawData, path)
case TYPE_BOOLEAN => writeBoolean(source.asInstanceOf[Boolean], rawData, path)
case TYPE_MODULE =>
i = i + 1
rawData.putInt(i)
writeModule(source.asInstanceOf[AbstractModule[_, _, _]], rawData, path)
case TYPE_TABLE =>
i = i + 1
rawData.putInt(i)
source match {
case s: Table =>
writeTable(source.asInstanceOf[Table], rawData, path)
case _ => throw new Error(s"Unknown table $source")
}
case _ => throw new IllegalArgumentException(objectType.toString)
}
byteWrite(rawData, path)
}
private def writeNumber(source: Double, rawData: ByteBuffer, path: Path): Unit = {
flush(rawData, path)
rawData.putDouble(source)
byteWrite(rawData, path)
}
private def writeVersionAndClass(version: String, className: String, rawData: ByteBuffer,
path: Path): Unit = {
writeString(version, rawData, path)
writeString(className, rawData, path)
}
private def writeString(string: String, rawData: ByteBuffer, path: Path): Unit = {
val length = string.length
flush(rawData, path)
rawData.putInt(length)
var i = 0
while (i < length) {
flush(rawData, path)
rawData.put(string(i).toByte)
i += 1
}
byteWrite(rawData, path)
}
private def writeBoolean(source: Boolean, rawData: ByteBuffer, path: Path): Unit = {
val tmp = if (source) 1 else 0
flush(rawData, path)
rawData.putInt(tmp)
byteWrite(rawData, path)
}
private def writeDoubleTensor(source: Tensor[Double], rawData: ByteBuffer, path: Path): Unit = {
val ndimension = source.dim()
flush(rawData, path)
rawData.putInt(ndimension)
var i = 0
while (i < ndimension) {
flush(rawData, path)
rawData.putLong(source.size(i + 1))
i += 1
}
i = 0
while (i < ndimension) {
flush(rawData, path)
rawData.putLong(source.stride(i + 1))
i += 1
}
flush(rawData, path)
rawData.putLong(source.storageOffset())
if (ndimension == 0) {
writeObject(source, rawData, path, TYPE_NIL)
}
else {
writeObject(source, rawData, path, TYPE_DOUBLE_STORAGE)
}
byteWrite(rawData, path)
}
private def writeFloatTensor(source: Tensor[Float], rawData: ByteBuffer, path: Path): Unit = {
val ndimension = source.dim()
flush(rawData, path)
rawData.putInt(ndimension)
var i = 0
while (i < ndimension) {
flush(rawData, path)
rawData.putLong(source.size(i + 1))
i += 1
}
i = 0
while (i < ndimension) {
flush(rawData, path)
rawData.putLong(source.stride(i + 1))
i += 1
}
flush(rawData, path)
rawData.putLong(source.storageOffset())
if (ndimension == 0) {
writeObject(source, rawData, path, TYPE_NIL)
}
else {
writeObject(source, rawData, path, TYPE_FLOAT_STORAGE)
}
byteWrite(rawData, path)
}
private def writeGeneralParameters(
source: AbstractModule[_, _, _],
table: Table): Table = {
table("gradInput") = source.gradInput
table("output") = source.output
table("_type") = source.getNumericType() match {
case DoubleType => "torch.DoubleTensor"
case FloatType => "torch.FloatTensor"
case _ =>
throw new IllegalArgumentException(s"Unknown type ${source.getNumericType()}")
}
table
}
private def writeSpatialConvolution(source: SpatialConvolution[_], rawData: ByteBuffer,
path: Path): Unit = {
require(source.nGroup == 1, "nGroup is not supported in torch")
val table: Table = T()
writeGeneralParameters(source, table)
table("nInputPlane") = source.nInputPlane
table("nOutputPlane") = source.nOutputPlane
table("kW") = source.kernelW
table("kH") = source.kernelH
table("dW") = source.strideW
table("dH") = source.strideH
table("padW") = source.padW
table("padH") = source.padH
table("fGradInput") = source.fGradInput
table("fInput") = source.fInput
table("gradBias") = source.gradBias
table("bias") = source.bias
table("weight") = source.weight.view(source.nOutputPlane,
source.nInputPlane * source.kernelH * source.kernelW)
table("gradWeight") = source.gradWeight.view(source.nOutputPlane,
source.nInputPlane * source.kernelH * source.kernelW)
if (!source.propagateBack) table("gradInput") = null
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeSpatialMaxPooling(source: SpatialMaxPooling[_], rawData: ByteBuffer,
path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("kW") = source.kW
table("kH") = source.kH
table("dW") = source.dW
table("dH") = source.dH
table("padW") = source.padW
table("padH") = source.padH
table("indices") = source.indices
table("ceil_mode") = source.ceil_mode
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeThreshold(source: Threshold[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("val") = source.value
table("inplace") = source.inPlace
table("threshold") = source.threshold
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeConcat(source: Concat[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
val modules = T()
for (i <- 1 to source.modules.length) {
modules(i) = source.modules(i - 1)
}
table("dimension") = source.dimension
table("modules") = modules
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeSequential(source: Sequential[_],
rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
val modules = T()
for (i <- 1 to source.modules.length) {
modules(i) = source.modules(i - 1)
}
table("modules") = modules
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeDropout(source: Dropout[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("noise") = source.noise
table("p") = source.getP()
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeView(source: View[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("numElements") = source.numElements
table("size") = source.getSize()
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeReLU(source: ReLU[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("val") = source.value
table("threshold") = source.threshold
table("inplace") = source.inPlace
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeLogSoftMax(source: LogSoftMax[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def writeLinear(source: Linear[_], rawData: ByteBuffer, path: Path): Unit = {
val table: Table = T()
writeGeneralParameters(source, table)
table("gradBias") = source.gradBias
table("bias") = source.bias
table("weight") = source.weight
table("gradWeight") = source.gradWeight
writeObject(table, rawData, path, TYPE_TABLE)
byteWrite(rawData, path)
}
private def isDoubleTensor(tensor: Tensor[_]): Boolean = {
tensor.getType() match {
case FloatType => false
case DoubleType => true
case _ => throw new IllegalArgumentException
}
}
private def writeTable(source: Table, rawData: ByteBuffer, path: Path): Unit = {
val size = source.length()
flush(rawData, path)
rawData.putInt(size)
val it = source.keySet.toIterator
while (it.hasNext) {
val key = it.next()
key match {
case k: String =>
writeObject(k, rawData, path, TYPE_STRING)
case d: Double =>
writeObject(d, rawData, path, TYPE_NUMBER)
case f: Float =>
writeObject(f.toDouble, rawData, path, TYPE_NUMBER)
case i: Int =>
writeObject(i.toDouble, rawData, path, TYPE_NUMBER)
case _ => new Error(s"Unsupported key type $key")
}
val sourceKey = source.getOrElse[Any](key, null)
sourceKey match {
case s: Tensor[_] =>
if (isDoubleTensor(s)) {
writeObject(s.asInstanceOf[Tensor[Double]], rawData, path, TYPE_DOUBLE_TENSOR)
} else {
writeObject(s.asInstanceOf[Tensor[Float]], rawData, path, TYPE_FLOAT_TENSOR)
}
case s: Table =>
writeObject(s, rawData, path, TYPE_TABLE)
case s: Int =>
writeObject(s.toDouble, rawData, path, TYPE_NUMBER)
case s: Float =>
writeObject(s.toDouble, rawData, path, TYPE_NUMBER)
case s: Double =>
writeObject(s, rawData, path, TYPE_NUMBER)
case s: Boolean =>
writeObject(s, rawData, path, TYPE_BOOLEAN)
case s: String =>
writeObject(s, rawData, path, TYPE_STRING)
case s: mutable.Map[_, _] =>
writeObject(s, rawData, path, TYPE_TABLE)
case s: Array[Int] =>
writeObject(s, rawData, path, TYPE_LONG_STORAGE)
case s: AbstractModule[_, _, _] =>
writeObject(s, rawData, path, TYPE_MODULE)
case null =>
writeObject(sourceKey, rawData, path, TYPE_NIL)
case _ => new Error(s"Unsupported value type $key")
}
}
byteWrite(rawData, path)
}
private def writeFloatStorage(source: Tensor[Float], rawData: ByteBuffer, path: Path): Unit = {
val storageLength = source.storage().length()
flush(rawData, path)
rawData.putLong(storageLength)
var i = 0
while (i < storageLength) {
flush(rawData, path)
rawData.putFloat(source.storage()(i))
i += 1
}
byteWrite(rawData, path)
}
private def writeDoubleStorage(source: Tensor[Double], rawData: ByteBuffer, path: Path): Unit = {
val storageLength = source.storage().length()
flush(rawData, path)
rawData.putLong(storageLength)
var i = 0
while (i < storageLength) {
flush(rawData, path)
rawData.putDouble(source.storage()(i))
i += 1
}
byteWrite(rawData, path)
}
private def writeLongStorage(source: Array[Int], rawData: ByteBuffer, path: Path): Unit = {
val storageLength = source.length
flush(rawData, path)
rawData.putLong(storageLength)
var i = 0
while (i < storageLength) {
flush(rawData, path)
rawData.putLong(source(i))
i += 1
}
byteWrite(rawData, path)
}
// Basic objects
private def readDoubleStorage(rawData: ByteBuffer): Storage[Double] = {
val storageLength = rawData.getLong.toInt
val data = new Array[Double](storageLength)
var i = 0
while (i < storageLength) {
data(i) = rawData.getDouble
i += 1
}
Storage(data)
}
private def readFloatStorage(rawData: ByteBuffer): Storage[Float] = {
val storageLength = rawData.getLong.toInt
val data = new Array[Float](storageLength)
var i = 0
while (i < storageLength) {
data(i) = rawData.getFloat
i += 1
}
Storage(data)
}
// TODO: support LongStorage
private def readLongStorage(rawData: ByteBuffer): Array[Int] = {
val storageLength = rawData.getLong.toInt
val data = new Array[Int](storageLength)
var i = 0
while (i < storageLength) {
data(i) = rawData.getLong.toInt
i += 1
}
data
}
private def readVersionAndClass(rawData: ByteBuffer): (Int, String) = {
val version = readString(rawData: ByteBuffer)
val pattern = "^V (.*)$".r
version match {
case pattern(v) => (v.toInt, readString(rawData))
case _ => (0, version)
}
}
private def readString(rawData: ByteBuffer): String = {
val length = rawData.getInt()
val string = new Array[Char](length)
var i = 0
while (i < string.length) {
string(i) = rawData.get.toChar
i += 1
}
new String(string)
}
private def readNumber(rawData: ByteBuffer): Double = {
rawData.getDouble()
}
private def readBoolean(rawData: ByteBuffer): Boolean = {
rawData.getInt == 1
}
// Table
private def readTable(
rawData: ByteBuffer,
objects: mutable.Map[Int, Any]): Table = {
val size = rawData.getInt
val result = T()
var i = 0
while (i < size) {
val key = readObject(rawData, objects)
val value = readObject(rawData, objects)
key match {
case d: Double if d % 1 == 0 =>
result(d.toInt) = value
case _ =>
result(key) = value
}
i += 1
}
result
}
// Tensor
private def readDoubleTensor(
rawData: ByteBuffer,
objects: mutable.Map[Int, Any]): Tensor[Double] = {
val nDimension = rawData.getInt()
val sizes = new Array[Int](nDimension)
val strides = new Array[Int](nDimension)
var i = 0
while (i < nDimension) {
sizes(i) = rawData.getLong.toInt
i += 1
}
i = 0
while (i < nDimension) {
strides(i) = rawData.getLong.toInt
i += 1
}
val offset = rawData.getLong.toInt
val storage = readObject(rawData, objects).asInstanceOf[Storage[Double]]
Tensor(storage, offset, sizes, strides)
}
// Tensor float
private def readFloatTensor(
rawData: ByteBuffer,
objects: mutable.Map[Int, Any]): Tensor[Float] = {
val nDimension = rawData.getInt()
val sizes = new Array[Int](nDimension)
val strides = new Array[Int](nDimension)
var i = 0
while (i < nDimension) {
sizes(i) = rawData.getLong.toInt
i += 1
}
i = 0
while (i < nDimension) {
strides(i) = rawData.getLong.toInt
i += 1
}
val offset = rawData.getLong.toInt
val storage = readObject(rawData, objects).asInstanceOf[Storage[Float]]
Tensor(storage, offset, sizes, strides)
}
// TODO: Support Long Tensor
private def readLongTensor(
rawData: ByteBuffer,
objects: mutable.Map[Int, Any]): Tensor[Double] = {
val nDimension = rawData.getInt()
val sizes = new Array[Int](nDimension)
val strides = new Array[Int](nDimension)
var i = 0
while (i < nDimension) {
sizes(i) = rawData.getLong.toInt
i += 1
}
i = 0
while (i < nDimension) {
strides(i) = rawData.getLong.toInt
i += 1
}
val offset = rawData.getLong.toInt
val longStorage = readObject(rawData, objects).asInstanceOf[Array[Int]]
if (null == longStorage) {
Tensor[Double](null, offset, sizes, strides)
} else {
val storageData: Array[Double] = new Array[Double](longStorage.length)
i = 0
while (i < storageData.length) {
storageData(i) = longStorage(i)
i += 1
}
val storage = Storage[Double](storageData)
Tensor(storage, offset, sizes, strides)
}
}
private def readSpatialMaxPoolingWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): SpatialMaxPooling[T] = {
val result = SpatialMaxPooling[T](
kW = elements[Double]("kW").toInt,
kH = elements[Double]("kH").toInt,
dW = elements[Double]("dW").toInt,
dH = elements[Double]("dH").toInt,
padW = elements.getOrElse("padW", 0.0).toInt,
padH = elements.getOrElse("padH", 0.0).toInt
)
val ceilMode = elements("ceil_mode").asInstanceOf[Boolean]
if (ceilMode) result.ceil() else result.floor()
result
}
private def readSpatialAveragePoolingWithType[T: ClassTag](
elements: Table)(
implicit ev: TensorNumeric[T]): SpatialAveragePooling[T] = {
val result = SpatialAveragePooling[T](
kW = elements[Double]("kW").toInt,
kH = elements[Double]("kH").toInt,
dW = elements.getOrElse("dW", 1.0).toInt,
dH = elements.getOrElse("dH", 1.0).toInt,
padW = elements.getOrElse("padW", 0.0).toInt,
padH = elements.getOrElse("padH", 0.0).toInt,
ceilMode = elements.getOrElse("ceil_mode", false),
countIncludePad = elements.getOrElse("count_include_pad", true),
divide = elements.getOrElse("divide", true)
)
result
}
private def readConcatWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): Concat[T] = {
val modules = elements[Table]("modules")
val result = Concat[T](elements("dimension").asInstanceOf[Double].toInt)
for (i <- 1 to modules.length()) {
result.add(modules(i))
}
result
}
private def readDropoutWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): Dropout[T] = {
val result = Dropout[T](
initP = elements.getOrElse("p", 0.5),
inplace = elements.getOrElse("inplace", false),
scale = elements.getOrElse("", true)
)
result
}
private def readLinearWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]) : Linear[T] = {
val weight = elements("weight").asInstanceOf[Tensor[T]]
if (elements.contains("bias")) {
val result = Linear[T](weight.size(2), weight.size(1))
result.weight.copy(weight)
result.bias.copy(elements("bias").asInstanceOf[Tensor[T]])
result
} else {
val result = Linear[T](weight.size(2), weight.size(1), withBias = false)
result.weight.copy(weight)
result
}
}
private def readSpatialConvolutionMapWithType[T: ClassTag](
elements: Table)(
implicit ev: TensorNumeric[T]): SpatialConvolutionMap[T] = {
val weight = elements.getOrElse("weight", null).asInstanceOf[Tensor[T]]
val bias = elements.getOrElse("bias", null).asInstanceOf[Tensor[T]]
val result = SpatialConvolutionMap[T](
connTable = elements("connTable").asInstanceOf[Tensor[T]],
kW = elements[Double]("kW").toInt,
kH = elements[Double]("kH").toInt,
dW = elements.getOrElse("dW", 1.0).toInt,
dH = elements.getOrElse("dH", 1.0).toInt,
padW = elements.getOrElse("padW", 0.0).toInt,
padH = elements.getOrElse("padH", 0.0).toInt
)
result.weight.copy(weight)
result.bias.copy(bias)
result
}
private def readBatchNormalizationWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): BatchNormalization[T] = {
val weight = elements("weight").asInstanceOf[Tensor[T]]
val runningMean = elements("running_mean").asInstanceOf[Tensor[T]]
val runningVar = elements("running_var").asInstanceOf[Tensor[T]]
val bias = elements("bias").asInstanceOf[Tensor[T]]
val result = new BatchNormalization[T](
nOutput = runningMean.size(1),
eps = elements.getOrElse("eps", 1e-5),
momentum = elements.getOrElse("momentum", 0.1),
affine = elements.getOrElse("affine", true)
)
result.weight.copy(weight)
result.bias.copy(bias)
result.runningMean.copy(runningMean)
result.runningVar.copy(runningVar)
result
}
private def readSpatialBatchNormalizationWithType[T: ClassTag](
elements: Table)(
implicit ev: TensorNumeric[T]): SpatialBatchNormalization[T] = {
val weight = elements("weight").asInstanceOf[Tensor[T]]
val runningMean = elements("running_mean").asInstanceOf[Tensor[T]]
val runningVar = elements("running_var").asInstanceOf[Tensor[T]]
val bias = elements("bias").asInstanceOf[Tensor[T]]
val result = new SpatialBatchNormalization[T](
nOutput = runningMean.size(1),
eps = elements.getOrElse("eps", 1e-5),
momentum = elements.getOrElse("momentum", 0.1),
affine = elements.getOrElse("affine", true)
)
result.weight.copy(weight)
result.bias.copy(bias)
result.runningMean.copy(runningMean)
result.runningVar.copy(runningVar)
result
}
private def readConcatTableWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): ConcatTable[T] = {
val result = new ConcatTable[T]()
val modules = elements[Table]("modules")
for (i <- 1 to modules.length()) {
result.add(modules(i))
}
result
}
private def readThresholdWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): Threshold[T] = {
Threshold[T](
th = elements.getOrElse("threshold", 1e-6),
v = elements.getOrElse("val", 0.0),
ip = elements.getOrElse("inplace", false)
)
}
private def readViewWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): View[T] = {
val result = View[T](elements("size").asInstanceOf[Array[Int]])
result.setNumInputDims(elements.getOrElse("numInputDims", 0.0).toInt)
val numElements = elements.getOrElse("numElements", - 1.0).toInt
require(result.numElements == numElements, "Invalid view file")
result
}
private def readSpatialZeroPaddingWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): SpatialZeroPadding[T] = {
val result = SpatialZeroPadding[T](
elements[Double]("pad_l").toInt,
elements[Double]("pad_r").toInt,
elements[Double]("pad_t").toInt,
elements[Double]("pad_b").toInt
)
result
}
private def readSpatialConvolutionWithType[T: ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): SpatialConvolution[T] = {
val propagateBack = if (null == elements("gradInput")) false else true
val result = SpatialConvolution[T](
nInputPlane = elements[Double]("nInputPlane").toInt,
nOutputPlane = elements[Double]("nOutputPlane").toInt,
kernelW = elements[Double]("kW").toInt,
kernelH = elements[Double]("kH").toInt,
strideW = elements.getOrElse("dW", 1.0).toInt,
strideH = elements.getOrElse("dH", 1.0).toInt,
padW = elements.getOrElse("padW", 0.0).toInt,
padH = elements.getOrElse("padH", 0.0).toInt,
nGroup = 1,
propagateBack = propagateBack
)
result.weight.copy(elements("weight").asInstanceOf[Tensor[T]])
result.bias.copy(elements("bias").asInstanceOf[Tensor[T]])
result
}
private def readSequentialModuleWithType[T : ClassTag](
elements: Table)(implicit ev: TensorNumeric[T]): Sequential[T] = {
val modules = elements[Table]("modules")
val result = Sequential[T]()
for (i <- 1 to modules.length()) {
result.add(modules(i))
}
result
}
}