Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.example.dlframes.imageTransferLearning
import com.intel.analytics.bigdl.dataset.Sample
import com.intel.analytics.bigdl.dlframes.{DLClassifier, DLModel}
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.transform.vision.image._
import com.intel.analytics.bigdl.transform.vision.image.augmentation._
import com.intel.analytics.bigdl.utils.Engine
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.{Pipeline, Transformer}
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.{DataFrame, SQLContext}
import scopt.OptionParser
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import org.apache.spark.SparkContext
object ImageTransferLearning {
def main(args: Array[String]): Unit = {
val defaultParams = Utils.LocalParams()
Utils.parser.parse(args, defaultParams).map { params =>
val conf = Engine.createSparkConf().setAppName("TransferLearning")
val sc = SparkContext.getOrCreate(conf)
val sqlContext = new SQLContext(sc)
Engine.init
val createLabel = udf((name: String) => if (name.contains("cat")) 1.0 else 2.0)
val imagesDF: DataFrame = Utils.loadImages(params.folder, params.batchSize, sqlContext)
.withColumn("label", createLabel(col("imageName")))
.withColumnRenamed("features", "imageFeatures")
.drop("features")
val Array(validationDF, trainingDF) = imagesDF.randomSplit(Array(0.20, 0.80), seed = 1L)
validationDF.persist()
trainingDF.persist()
val loadedModel = Module
.loadCaffeModel[Float](params.caffeDefPath, params.modelPath)
val featurizer = new DLModel[Float](loadedModel, Array(3, 224, 224))
.setBatchSize(params.batchSize)
.setFeaturesCol("imageFeatures")
.setPredictionCol("features")
val lrModel = Sequential().add(Linear(1000, 2)).add(LogSoftMax())
val classifier = new DLClassifier(lrModel, ClassNLLCriterion[Float](), Array(1000))
.setLearningRate(0.003).setBatchSize(params.batchSize)
.setMaxEpoch(20)
val pipeline = new Pipeline().setStages(
Array(featurizer, classifier))
val pipelineModel = pipeline.fit(trainingDF)
trainingDF.unpersist()
val predictions = pipelineModel.transform(validationDF)
predictions.show(200)
predictions.printSchema()
val evaluation = new MulticlassClassificationEvaluator().setPredictionCol("prediction")
.setMetricName("weightedPrecision").evaluate(predictions)
println("evaluation result on validationDF: " + evaluation)
validationDF.unpersist()
}
}
}
object Utils {
case class LocalParams(caffeDefPath: String = " ",
modelPath: String = " ",
folder: String = " ",
batchSize: Int = 16,
nEpochs: Int = 10
)
val defaultParams = LocalParams()
val parser = new OptionParser[LocalParams]("BigDL Example") {
opt[String]("caffeDefPath")
.text(s"caffeDefPath")
.action((x, c) => c.copy(caffeDefPath = x))
opt[String]("modelPath")
.text(s"modelPath")
.action((x, c) => c.copy(modelPath = x))
opt[String]("folder")
.text(s"folder")
.action((x, c) => c.copy(folder = x))
opt[Int]('b', "batchSize")
.text(s"batchSize")
.action((x, c) => c.copy(batchSize = x.toInt))
opt[Int]('e', "nEpochs")
.text("epoch numbers")
.action((x, c) => c.copy(nEpochs = x))
}
def loadImages(path: String, partitionNum: Int, sqlContext: SQLContext): DataFrame = {
val imageFrame: ImageFrame = ImageFrame.read(path, sqlContext.sparkContext)
val transformer = Resize(256, 256) -> CenterCrop(224, 224) ->
ChannelNormalize(123, 117, 104, 1, 1, 1) -> MatToTensor() -> ImageFrameToSample()
val transformed: ImageFrame = transformer(imageFrame)
val imageRDD = transformed.toDistributed().rdd.map { im =>
(im.uri, im[Sample[Float]](ImageFeature.sample).getData())
}
val imageDF = sqlContext.createDataFrame(imageRDD)
.withColumnRenamed("_1", "imageName")
.withColumnRenamed("_2", "features")
imageDF
}
}