Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.inception
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.nn.{ClassNLLCriterion, Module}
import com.intel.analytics.bigdl.optim.SGD.{Poly, SequentialSchedule, Warmup}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.utils.{Engine, LoggerFilter, T, Table}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
object TrainInceptionV1 {
LoggerFilter.redirectSparkInfoLogs()
import Options._
def main(args: Array[String]): Unit = {
trainParser.parse(args, new TrainParams()).map(param => {
val imageSize = 224
val conf = Engine.createSparkConf().setAppName("BigDL InceptionV1 Train Example")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val trainSet = ImageNet2012(
param.folder + "/train",
sc,
imageSize,
param.batchSize,
Engine.nodeNumber(),
Engine.coreNumber(),
param.classNumber
)
val valSet = ImageNet2012Val(
param.folder + "/val",
sc,
imageSize,
param.batchSize,
Engine.nodeNumber(),
Engine.coreNumber(),
param.classNumber
)
val model = if (param.modelSnapshot.isDefined) {
Module.load[Float](param.modelSnapshot.get)
} else if (param.graphModel) {
Inception_v1_NoAuxClassifier.graph(classNum = param.classNumber)
} else {
Inception_v1_NoAuxClassifier(classNum = param.classNumber)
}
val iterationPerEpoch = math.ceil(1281167.toDouble / param.batchSize).toInt
val maxIteration = if (param.maxEpoch.isDefined) {
iterationPerEpoch * param.maxEpoch.get
} else param.maxIteration
val warmupIteration = param.warmupEpoch.getOrElse(0) * iterationPerEpoch
val optimMethod = if (param.stateSnapshot.isDefined) {
OptimMethod.load[Float](param.stateSnapshot.get)
} else {
val warmupDelta = if (warmupIteration == 0) 0.0
else (param.maxLr.getOrElse(param.learningRate) - param.learningRate) / warmupIteration
val polyIteration = maxIteration - warmupIteration
val lrSchedule = SequentialSchedule(iterationPerEpoch)
.add(Warmup(warmupDelta), warmupIteration).add(Poly(0.5, polyIteration), polyIteration)
new SGD[Float](learningRate = param.learningRate, learningRateDecay = 0.0,
weightDecay = param.weightDecay, momentum = 0.9, dampening = 0.0, nesterov = false,
learningRateSchedule = lrSchedule)
}
val optimizer = Optimizer(
model = model,
dataset = trainSet,
criterion = new ClassNLLCriterion[Float]()
)
val (checkpointTrigger, testTrigger, endTrigger) = if (param.maxEpoch.isDefined) {
(Trigger.everyEpoch, Trigger.everyEpoch, Trigger.maxEpoch(param.maxEpoch.get))
} else {
(
Trigger.severalIteration(param.checkpointIteration),
Trigger.severalIteration(param.checkpointIteration),
Trigger.maxIteration(param.maxIteration)
)
}
if (param.checkpoint.isDefined) {
optimizer.setCheckpoint(param.checkpoint.get, checkpointTrigger)
}
if (param.overWriteCheckpoint) {
optimizer.overWriteCheckpoint()
}
if (param.gradientMin.isDefined && param.gradientMax.isDefined) {
optimizer.setConstantGradientClipping(param.gradientMin.get.toFloat,
param.gradientMax.get.toFloat)
}
if (param.gradientL2NormThreshold.isDefined) {
optimizer.setGradientClippingByl2Norm(param.gradientL2NormThreshold.get.toFloat)
}
optimizer
.setOptimMethod(optimMethod)
.setValidation(testTrigger,
valSet, Array(new Top1Accuracy[Float], new Top5Accuracy[Float]))
.setEndWhen(endTrigger)
.optimize()
sc.stop()
})
}
}