Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Creates a criterion that measures the loss given an input tensor and target tensor.
*
* The input and target are two tensors with same size.
* For instance:
*
* x = Tensor[Double](Storage(Array(0.1, 0.2, 0.3)))
* y = Tensor[Double](Storage(Array(0.15, 0.25, 0.35)))
*
* loss(x, y) = 1 - cos(x, y)
*/
@SerialVersionUID(- 4008475267198411701L)
class CosineDistanceCriterion[@specialized(Float, Double) T: ClassTag]
(val sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
@transient
private var buffer: Tensor[T] = null
@transient
private var w1: Tensor[T] = null
@transient
private var w22: Tensor[T] = null
@transient
private var w: Tensor[T] = null
@transient
private var w32: Tensor[T] = null
@transient
private var _outputs: Tensor[T] = null
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
var input1 = input
var input2 = target
if (null == buffer) buffer = Tensor[T]()
if (null == w1) w1 = Tensor[T]()
if (null == w22) w22 = Tensor[T]()
if (null == w) w = Tensor[T]()
if (null == _outputs) _outputs = Tensor[T]()
if (null == w32) w32 = Tensor[T]()
if (input1.dim() == 1) {
input1 = input1.view(1, input1.nElement())
input2 = input2.view(1, input2.nElement())
}
buffer.resizeAs(input1).cmul(input1, input2)
w1.sum(buffer, 2)
val epsilon = 1e-12
buffer.cmul(input1, input1)
w22.sum(buffer, 2).add(ev.fromType(epsilon))
_outputs.resizeAs(w22).fill(ev.fromType(1))
w22.cdiv(_outputs, w22)
w.resizeAs(w22).copy(w22)
buffer.cmul(input2, input2)
w32.sum(buffer, 2).add(ev.fromType(epsilon))
w32.cdiv(_outputs, w32)
w.cmul(w32)
w.sqrt()
_outputs.cmul(w1, w)
_outputs.mul(ev.fromType(-1)).add(ev.fromType(1))
output = _outputs.sum()
if (sizeAverage) {
output = ev.divide(output, ev.fromType(input.size(1)))
}
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
var v1 = input
var v2 = target
if (v1.dim() == 1) {
v1 = v1.view(1, v1.nElement())
v2 = v2.view(1, v2.nElement())
}
if (null == gradInput) gradInput = Tensor[T]()
val gw1 = gradInput
gw1.resizeAs(v1).copy(v2)
buffer.resizeAs(w1).cmul(w1, w22)
gw1.addcmul(ev.fromType(-1), buffer.expandAs(v1), v1)
gw1.cmul(w.expandAs(v1)).mul(ev.fromType(-1))
if (sizeAverage) {
gradInput.div(ev.fromType(v2.size(1)))
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[CosineEmbeddingCriterion[T]]
override def toString(): String = {
s"nn.CosineEmbeddingCriterion($sizeAverage)"
}
override def equals(other: Any): Boolean = other match {
case that: CosineDistanceCriterion[T] =>
super.equals(that) &&
(that canEqual this) &&
sizeAverage == that.sizeAverage
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), sizeAverage)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object CosineDistanceCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : CosineDistanceCriterion[T] = {
new CosineDistanceCriterion[T](sizeAverage)
}
}