com.intel.analytics.bigdl.nn.TanhShrink.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* A simple layer for each element of the input tensor, do the following operation
* during the forward process:
* [f(x) = tanh(x) - 1]
*/
@SerialVersionUID(7783278258985544682L)
class TanhShrink[T: ClassTag](
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
private val tanh = new Tanh[T]()
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val th = tanh.updateOutput(input)
output.resizeAs(input).copy(input)
output.add(ev.fromType[Int](-1), th)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val dth = tanh.updateGradInput(input, gradOutput)
gradInput.resizeAs(input).copy(gradOutput)
gradInput.add(ev.fromType[Int](-1), dth)
gradInput
}
override def toString: String = s"nn.TanhShrink"
}
object TanhShrink {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : TanhShrink[T] = {
new TanhShrink[T]()
}
}