Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.VolumetricAveragePooling
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Applies average pooling operation for 3D data (spatial or spatio-temporal).
* Data format currently supported for this layer is 'CHANNEL_FIRST' (dimOrdering='th').
* Border mode currently supported for this layer is 'valid'.
* The input of this layer should be 5D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param poolSize Int array of length 3. Factors by which to downscale (dim1, dim2, dim3).
* Default is (2, 2, 2), which will halve the image in each dimension.
* @param strides Int array of length 3. Stride values. Default is null, and in this case it will
* be equal to poolSize.
* @param dimOrdering Format of input data. Please use 'CHANNEL_FIRST' (dimOrdering='th').
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class AveragePooling3D[T: ClassTag](
poolSize: Array[Int] = Array(2, 2, 2),
strides: Array[Int] = null,
dimOrdering: String = "CHANNEL_FIRST",
inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends Pooling3D[T](poolSize, strides, dimOrdering, inputShape) {
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val layer = VolumetricAveragePooling(
kT = poolSize(0),
kW = poolSize(2),
kH = poolSize(1),
dT = strideValues(0),
dW = strideValues(2),
dH = strideValues(1),
countIncludePad = false)
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object AveragePooling3D {
def apply[@specialized(Float, Double) T: ClassTag](
poolSize: (Int, Int, Int) = (2, 2, 2),
strides: (Int, Int, Int) = null,
dimOrdering: String = "th",
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): AveragePooling3D[T] = {
val strideValues = if (strides != null) Array(strides._1, strides._2, strides._3)
else null
new AveragePooling3D[T](Array(poolSize._1, poolSize._2, poolSize._3),
strideValues, KerasUtils.toBigDLFormat5D(dimOrdering), inputShape)
}
}