Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, DataFormat}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* Batch normalization layer.
* Normalize the activations of the previous layer at each batch,
* i.e. applies a transformation that maintains the mean activation
* close to 0 and the activation standard deviation close to 1.
* It is a feature-wise normalization, each feature map in the input will be normalized separately.
* The input of this layer should be 4D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param epsilon Small Double > 0. Fuzz parameter. Default is 0.001.
* @param momentum Double. Momentum in the computation of the exponential average
* of the mean and standard deviation of the data,
* for feature-wise normalization. Default is 0.99.
* @param betaInit Name of initialization function for shift parameter. Default is 'zero'.
* @param gammaInit Name of initialization function for scale parameter. Default is 'one'.
* @param dimOrdering Format of input data. Either DataFormat.NCHW (dimOrdering='th') or
* DataFormat.NHWC (dimOrdering='tf'). Default is NCHW.
* For NCHW, axis along which to normalize is 1. For NHWC, axis is 3.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class BatchNormalization[T: ClassTag](
val epsilon: Double = 0.001,
val momentum: Double = 0.99,
val betaInit: String = "zero",
val gammaInit: String = "one",
val dimOrdering: DataFormat = DataFormat.NCHW,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
private def getInit(init: String, n: Int): Tensor[T] = {
val weights = Tensor[T](n)
init.toLowerCase() match {
case "zero" => weights.fill(ev.zero)
case "one" => weights.fill(ev.one)
case "glorot_uniform" => Xavier.init(weights)
weights
case "uniform" => RandomUniform(-0.05, 0.05).init(weights)
weights
case "normal" => RandomNormal(0.0, 0.05).init(weights)
weights
case _ => throw new IllegalArgumentException(s"Unsupported initialization method: " +
s"${init.toLowerCase()}")
}
}
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
require(input.length == 4,
s"BatchNormalization requires 4D input, but got input dim ${input.length}")
inputShape
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val nChannel = dimOrdering match {
case DataFormat.NCHW => input(1)
case DataFormat.NHWC => input(3)
}
// TODO: support arbitrary input shape
val layer = SpatialBatchNormalization(
nOutput = nChannel,
eps = epsilon,
momentum = momentum,
initWeight = getInit(gammaInit, nChannel),
initBias = getInit(betaInit, nChannel),
dataFormat = dimOrdering)
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object BatchNormalization {
def apply[@specialized(Float, Double) T: ClassTag](
epsilon: Double = 0.001,
momentum: Double = 0.99,
betaInit: String = "zero",
gammaInit: String = "one",
dimOrdering: String = "th",
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): BatchNormalization[T] = {
new BatchNormalization[T](epsilon, momentum, betaInit, gammaInit,
KerasUtils.toBigDLFormat(dimOrdering), inputShape)
}
}