Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.{InferReshape, InitializationMethod, Linear, Xavier, Zeros, Sequential => TSequential}
import com.intel.analytics.bigdl.nn.abstractnn._
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* A densely-connected NN layer.
* The most common input is 2D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param outputDim The size of output dimension.
* @param init Initialization method for the weights of the layer. Default is Xavier.
* You can also pass in corresponding string representations such as 'glorot_uniform'
* or 'normal', etc. for simple init methods in the factory method.
* @param activation Activation function to use. Default is null.
* You can also pass in corresponding string representations such as 'relu'
* or 'sigmoid', etc. for simple activations in the factory method.
* @param wRegularizer An instance of [[Regularizer]], (eg. L1 or L2 regularization),
* applied to the input weights matrices. Default is null.
* @param bRegularizer An instance of [[Regularizer]], applied to the bias. Default is null.
* @param bias Whether to include a bias (i.e. make the layer affine rather than linear).
* Default is true.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class Dense[T: ClassTag](
val outputDim: Int,
val init: InitializationMethod = Xavier,
val activation: KerasLayer[Tensor[T], Tensor[T], T] = null,
var wRegularizer: Regularizer[T] = null,
var bRegularizer: Regularizer[T] = null,
val bias: Boolean = true,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
require(inputShape.toSingle().size >=2,
s"Dense requires input dim >=2, but got dim: ${inputShape.toSingle().length}")
Shape(input.slice(0, input.length -1) ++ Array(outputDim))
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val inputShapeList = inputShape.toSingle()
val layer = Linear(
inputSize = inputShapeList.last,
outputSize = outputDim,
withBias = bias,
wRegularizer = wRegularizer,
bRegularizer = bRegularizer)
layer.setInitMethod(weightInitMethod = init, biasInitMethod = Zeros)
var torchLayer: AbstractModule[Tensor[T], Tensor[T], T] = layer
if (inputShape.toSingle().size > 2) {
val seq = new TSequential[T]()
val inDim = inputShapeList.last
seq.add(InferReshape(Array(-1, inDim), false))
seq.add(layer)
seq.add(InferReshape(Array(-1) ++
inputShapeList.slice(1, inputShapeList.size - 1) ++ Array(outputDim), false))
torchLayer = seq.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
KerasLayer.fuse(torchLayer, activation,
inputShape).asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object Dense {
def apply[@specialized(Float, Double) T: ClassTag](
outputDim: Int,
init: String = "glorot_uniform",
activation: String = null,
wRegularizer: Regularizer[T] = null,
bRegularizer: Regularizer[T] = null,
bias: Boolean = true,
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): Dense[T] = {
new Dense[T](outputDim, KerasUtils.getInitMethod(init),
KerasUtils.getKerasActivation(activation),
wRegularizer, bRegularizer, bias, inputShape)
}
}