com.intel.analytics.bigdl.utils.tf.loaders.Mean.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils.tf.loaders
import java.nio.ByteOrder
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.nn.Sequential
import com.intel.analytics.bigdl.nn.tf.Mean
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.tf.Context
import org.tensorflow.framework.{DataType, NodeDef}
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
class Mean extends TensorflowOpsLoader {
import Utils._
override def build[T: ClassTag](nodeDef: NodeDef, byteOrder: ByteOrder
, context: Context[T])(implicit ev: TensorNumeric[T]): Module[T] = {
val attr = nodeDef.getAttrMap
val dataType = getType(attr, "T")
val squeeze = !getBoolean(attr, "keep_dims")
val dt = dataType match {
case DataType.DT_INT8 =>
"Int"
case DataType.DT_INT16 =>
"Int"
case DataType.DT_UINT8 =>
"Int"
case DataType.DT_UINT16 =>
"Int"
case DataType.DT_INT32 =>
"Int"
case DataType.DT_INT64 =>
"Long"
case DataType.DT_FLOAT =>
"Float"
case DataType.DT_DOUBLE =>
"Double"
}
new MeanLoadTF[T](dt, squeeze)
}
}
class MeanLoadTF[T: ClassTag](val dataType: String,
val squeeze: Boolean)(implicit ev: TensorNumeric[T])
extends Adapter[T](Array(2)) {
override def build(tensorArrays: Array[Tensor[_]]): AbstractModule[Activity, Activity, T] = {
val dims = tensorArrays(0).asInstanceOf[Tensor[Int]]
val dim = ArrayBuffer[Int]()
val mean = Sequential[T]()
for (i <- 1 to dims.size(1)) {
dim += dims.valueAt(i) + 1
}
dataType match {
case "Int" =>
dim.foreach(i => mean.add(Mean[T, Int](i, squeeze = squeeze)))
case "Long" =>
dim.foreach(i => mean.add(Mean[T, Long](i, squeeze = squeeze)))
case "Float" =>
dim.foreach(i => mean.add(Mean[T, Float](i, squeeze = squeeze)))
case "Double" =>
dim.foreach(i => mean.add(Mean[T, Double](i, squeeze = squeeze)))
}
mean
}
}