com.intel.analytics.bigdl.models.lenet.Train.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.lenet
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.DataSet
import com.intel.analytics.bigdl.dataset.image.{BytesToGreyImg, GreyImgNormalizer, GreyImgToBatch}
import com.intel.analytics.bigdl.nn.{ClassNLLCriterion, CrossEntropyCriterion, Module}
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.utils._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
object Train {
LoggerFilter.redirectSparkInfoLogs()
import Utils._
def main(args: Array[String]): Unit = {
trainParser.parse(args, new TrainParams()).map(param => {
val conf = Engine.createSparkConf()
.setAppName("Train Lenet on MNIST")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val trainData = param.folder + "/train-images-idx3-ubyte"
val trainLabel = param.folder + "/train-labels-idx1-ubyte"
val validationData = param.folder + "/t10k-images-idx3-ubyte"
val validationLabel = param.folder + "/t10k-labels-idx1-ubyte"
val model = if (param.modelSnapshot.isDefined) {
Module.load[Float](param.modelSnapshot.get)
} else {
if (param.graphModel) {
LeNet5.graph(classNum = 10)
} else {
Engine.getEngineType() match {
case MklBlas => LeNet5(10)
case MklDnn => LeNet5.dnnGraph(param.batchSize / Engine.nodeNumber(), 10)
}
}
}
val criterion = Engine.getEngineType() match {
case MklBlas => ClassNLLCriterion()
case MklDnn => CrossEntropyCriterion()
}
val optimMethod = if (param.stateSnapshot.isDefined) {
OptimMethod.load[Float](param.stateSnapshot.get)
} else {
new SGD[Float](learningRate = param.learningRate,
learningRateDecay = param.learningRateDecay)
}
val trainSet = DataSet.array(load(trainData, trainLabel), sc) ->
BytesToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch(
param.batchSize)
val optimizer = Optimizer(
model = model,
dataset = trainSet,
criterion = criterion)
if (param.checkpoint.isDefined) {
optimizer.setCheckpoint(param.checkpoint.get, Trigger.everyEpoch)
}
if(param.overWriteCheckpoint) {
optimizer.overWriteCheckpoint()
}
val validationSet = DataSet.array(load(validationData, validationLabel), sc) ->
BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch(
param.batchSize)
optimizer
.setValidation(
trigger = Trigger.everyEpoch,
dataset = validationSet,
vMethods = Array(new Top1Accuracy, new Top5Accuracy[Float], new Loss[Float]))
.setOptimMethod(optimMethod)
.setEndWhen(Trigger.maxEpoch(param.maxEpoch))
.optimize()
sc.stop()
})
}
}