com.intel.analytics.bigdl.nn.Abs.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* an element-wise abs operation
*/
@SerialVersionUID(3070101246787506364L)
class Abs[T: ClassTag]
(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
output.abs(input)
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isContiguous() && gradOutput.isContiguous(),
"Abs: input and gradOutput should be contiguous")
gradInput.resizeAs(input).copy(gradOutput)
val inputArray = input.storage().array()
val gradArray = gradInput.storage().array()
val gradOffset = gradInput.storageOffset() - 1
var i = 0
while(i < gradInput.nElement()) {
val g = gradArray(i)
val z = inputArray(i)
gradArray(i + gradOffset) = ev.times(g,
if (ev.isGreater(z, ev.fromType(0))) ev.fromType(1) else ev.fromType(-1))
i += 1
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Abs[T]]
override def equals(other: Any): Boolean = other match {
case that: Abs[T] =>
super.equals(that) &&
(that canEqual this)
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode())
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Abs {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : Abs[T] = {
new Abs[T]()
}
}