com.intel.analytics.bigdl.nn.ActivityRegularization.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
class ActivityRegularization[T: ClassTag](val l1: Double, val l2: Double)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
var loss: T = ev.fromType(0)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
loss = ev.plus(ev.times(input.norm(1), ev.fromType(l1)), // l1
ev.times(ev.pow(input.norm(2), ev.fromType(2)), ev.fromType(l2))) // l2
output = input
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input)
.copy(input).sign().mul(ev.fromType(l1)) // l1
.add(input.mul(ev.fromType(2 * l2))) // l2
.add(gradOutput) // add all the gradients of branches
gradInput
}
}
object ActivityRegularization {
def apply[T: ClassTag](l1: Double, l2: Double)(
implicit ev: TensorNumeric[T]): ActivityRegularization[T] = {
new ActivityRegularization[T](l1, l2)
}
}