com.intel.analytics.bigdl.nn.CDivTable.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Takes a table with two Tensor and returns the component-wise division between them.
*/
@SerialVersionUID(- 3746356029327536265L)
class CDivTable[T: ClassTag](implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Tensor[_], T]{
override def updateOutput(input: Table): Tensor[_] = {
val res1 = input[Tensor[NumericWildcard]](1)
val res2 = input[Tensor[NumericWildcard]](2)
if (output.getType() != res1.getType()) {
output = res1.emptyInstance()
}
output.asInstanceOf[Tensor[NumericWildcard]].resizeAs(res1).copy(res1)
output.asInstanceOf[Tensor[NumericWildcard]].div(res2)
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[_]): Table = {
val res1 = input[Tensor[NumericWildcard]](1)
val res2 = input[Tensor[NumericWildcard]](2)
if (!gradInput.contains(1)) gradInput.insert(1, res1.emptyInstance())
if (!gradInput.contains(2)) gradInput.insert(2, res2.emptyInstance())
gradInput[Tensor[NumericWildcard]](1).resizeAs(res1)
.copy(gradOutput.asInstanceOf[Tensor[NumericWildcard]]).div(res2)
gradInput[Tensor[NumericWildcard]](2).resizeAs(res2).zero().
addcdiv(ev.fromType(-1), gradInput(1), res2).cmul(res1)
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[CDivTable[T]]
override def equals(other: Any): Boolean = other match {
case that: CDivTable[T] =>
super.equals(that) &&
(that canEqual this)
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode())
state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
}
}
object CDivTable {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : CDivTable[T] = {
new CDivTable[T]()
}
}