Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{IdentityOutputShape, TensorModule}
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, Tensor, TensorFunc6}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
* Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
* [http://arxiv.org/pdf/1511.07289.pdf]
*/
@SerialVersionUID( - 3525781855978085005L)
class ELU[T: ClassTag](
val alpha: Double = 1.0,
val inplace: Boolean = false)(
implicit ev: TensorNumeric[T])
extends TensorModule[T] {
val _alpha = ev.fromType[Double](alpha)
// Todo: Improve the performance of contiguous tensor
override def updateOutput(input: Tensor[T]): Tensor[T] = {
if (inplace) {
input.apply1(in => {
if (ev.isGreaterEq(ev.fromType[Double](0), in)) {
ev.times(ev.minus(ev.exp(in), ev.fromType[Double](1)), _alpha)
} else {
in
}
})
output.set(input)
} else {
output.resizeAs(input)
output.map(input, (out, in) => {
if (ev.isGreaterEq(ev.fromType[Int](0), in)) {
ev.times(ev.minus(ev.exp(in), ev.fromType[Double](1)), _alpha)
} else {
in
}
})
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(gradOutput),
"input should have the same size with gradOutput" +
s"input (${input.dim()}) gradOutput (${gradOutput.dim()}")
if (inplace) {
gradOutput.map(output, (grad, out) => {
if (ev.isGreaterEq(ev.fromType[Int](0), out)) {
ev.times(ev.plus(out, _alpha), grad)
} else {
grad
}
})
gradInput.set(gradOutput)
} else {
gradInput.resizeAs(input)
val func = new TensorFunc6[T] {
override def apply (data1: Array[T], offset1: Int, data2: Array[T],
offset2: Int, data3: Array[T], offset3: Int): Unit = {
data1(offset1) = if (ev.isGreater(data3(offset3), ev.fromType[Int](0))) {
data2(offset2)
} else {
ev.times(ev.plus(data3(offset3), _alpha), data2(offset2))
}
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, output, func)
}
gradInput
}
override def clearState(): this.type = {
if (!inplace) {
super.clearState()
}
this
}
}
object ELU {
def apply[@specialized(Float, Double) T: ClassTag](
alpha: Double = 1.0,
inplace: Boolean = false)
(implicit ev: TensorNumeric[T]) : ELU[T] = {
new ELU[T](alpha, inplace)
}
}