com.intel.analytics.bigdl.nn.FlattenTable.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* This is a table layer which takes an arbitrarily deep table of Tensors
* (potentially nested) as input and a table of Tensors without any nested
* table will be produced
*/
@SerialVersionUID(7620301574431959449L)
class FlattenTable[T: ClassTag] (implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Table, T] {
override def updateOutput(input: Table): Table = {
output = input.flatten()
output
}
override def updateGradInput(input: Table, gradOutput: Table): Table = {
gradInput = gradOutput.inverseFlatten(input)
gradInput
}
override def toString: String = {
s"nn.Flatten"
}
}
object FlattenTable {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : FlattenTable[T] = {
new FlattenTable[T]()
}
}